首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The results of multicolor surface photometry of the S0 galaxies NGC 524, NGC 1138, and NGC 7280 and the spiral galaxies NGC 532, NGC 783, and NGC 1589 are reported. U BV RI observations were acquired with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan), while JHK data were taken from the 2MASS catalog. The overall structure of the galaxies is analyzed and the galaxy images decomposed into bulge and disk components. The parameters of the galaxy components—rings, bars, spiral arms, and dust lanes—are determined. The bulge/disk decompositions based on averaged one-dimensional photometric profiles yield incorrect parameters for the bulges of the S0-Sa galaxies with bars and/or rings, whose inner regions are dominated by the radiation of the bulge.  相似文献   

2.
Spectroscopic observations of three lenticular (S0) galaxies (NGC 1167, NGC 4150, and NGC 6340) and one SBa galaxy (NGC 2273) have been taken with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences aimed to study the structure and kinematic properties of early-type disk galaxies. The radial profiles of the stellar radial velocities and the velocity dispersion are measured. N-body simulations are used to construct dynamical models of galaxies containing a stellar disk, bulge, and halo. The masses of individual components are estimated formaximum-mass disk models. A comparison of models with estimated rotational velocities and the stellar velocity dispersion suggests that the stellar disks in lenticular galaxies are “overheated”; i.e., there is a significant excess velocity dispersion over the minimum level required to maintain the stability of the disk. This supports the hypothesis that the stellar disks of S0 galaxies were subject to strong gravitational perturbations. The relative thickness of the stellar disks in the S0 galaxies considered substantially exceed the typical disk thickness of spiral galaxies.  相似文献   

3.
4.
Two-color photometric data obtained on the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 studied galaxies are classified as lenticular galaxies. The stellar populations in the galaxies are very diverse, from old stars with ages of T > 10 billion years (IC 1541) to relatively young stars with ages of T ∼ 1–3 billion years (IC 1548, NGC 85); in one case, star formation is ongoing (UCM 0018+2216). In most of the studied galaxies, more precisely in all of them brighter than M B ∼ −18, two-tiered stellar disks are detected, whose radial surface-brightness profiles can be described by two exponential segments with different characteristic scales—shorter near the center and longer at the periphery. All of the dwarf S0 galaxies with single-tiered disks are close companions to larger galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological signs of a “minor merger” are found in the lenticular galaxy NGC 85. Based on these last two results, it is concluded that the most probable mechanism for their transformation of spiral into lenticular galaxies in groups is gravitational (minor mergers and tidal interactions).  相似文献   

5.
Members of the NGC 524 group of galaxies are studied using data obtained on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, with the SCORPIO reducer in an imaging mode. Surface photometry has been carried out and parameters of the large-scale structural components??disks and bulges??have been determined for the six largest galaxies of the group. A lowered percentage of bars and enhanced percentage of ring structures were found. The integrated B-V colors of a hundred of dwarf galaxies in the vicinity (within 30 kpc) of the six largest galaxies of the group have been measured. A considerable number of blue irregular galaxies with ongoing star formation is present among nearby dwarf satellites of lenticular galaxies of the group. The luminosity function for dwarf members of the group suggests that the total mass of the group is not very high, and that the X-ray emitting gas observed in the direction of NGC 524 does not belong to the group halo.  相似文献   

6.
We use UBVRI CCD photometry to study star-forming regions (SFRs) in the galaxies NGC 5585 and IC 1525. The observations were acquired with the 1.5-m telescope of the Mt. Maidanak Observatory of the Astronomical Institute of the Uzbek Academy of Sciences (Uzbekistan), with seeing of 0.8″–1.8″. We identified 47 SFRs in NGC 5585 and 16 SFRs in IC 1525. We estimated the ages and internal extinctions of the SFRs using the PEGASE2 evolution models. The sizes of the SFRs were also determined. We discuss in detail the techniques applied to evaluate the SFR parameters from photometric analysis. The age range for the studied SFRs is (2–40) × 106 yrs, and the internal extinctions are A(V ) ≤ 1.5m. The age distributions of the SFRs in both galaxies are typical of stellar systems with intense, extended star formation. The internal extinction in the SFRs decreases with distance from the galactic centers: A(V ) ∝ −r. For both galaxies, the scale length for the decrease of the dust surface density, estimated from the A(V )−r relation for SFRs, is close to the scale length for the disk brightness decrease in the V and R bands. Relatively larger and older SFRs are observed in the galaxies’ rings, while such SFRs are not found in the spiral arms. We detected different SFR parameters for different spiral arms of NGC 5585.  相似文献   

7.
Seven early-type galaxies that are members of the massive X-ray group containing NGC 80 have been studied using two-dimensional spectroscopy with the 6-m telescope of the Special Astrophysical Observatory. We searched for evidence for the synchronous secular evolution of the galaxies in the group. The bulges of five of the seven galaxies appear to be old, with the average age of the bulge stars being 10–15 billion years. Signs of a relatively recent star-formation burst are observed in the small S0 galaxy IC 1548, whose average bulge age is 3 billion years and average core age is 1.5 billion years. A circumnuclear polar gas ring was also detected in this galaxy; in its outer regions, it makes a smooth transition to a gas disk that counter-rotates relative to the stars. IC 1548 probably underwent a close interaction, which resulted in its transformation from a spiral to a lenticular galaxy; the same interaction may also have induced the central burst of star formation. In the giant E0 galaxy NGC 83, a compact massive stellar-gas disk with a radius of about 2 kpc and very rapid rotation is observed, with ongoing star formation; the so-called “minor merger” is likely to have occurred there. We conclude that the NGC 80 group is in a state of formation, with the small NGC 83 subgroup “falling into” the large, old NGC 80 subgroup.  相似文献   

8.
The behavior of the gravitational potential outside the region where the main spiral arms of galaxies are located is investigated. The characteristic features of this behavior include nearly circular extensions of the main arms, which typically have an angular extent of 90°. It is natural to interpret these quarter-turn spirals as the response of the galactic disk to the gravitational potential of the main spiral arms. The theoretical models are supported by observational data for the brightness distributions in both normal (NGC 3631) and barred (NGC 1365) galaxies.  相似文献   

9.
A series of numerical N-body simulations is performed in order to dynamically model the properties of four galaxies (NGC 5603, NGC 3198, NGC 891, and NGC 1566) with known rotation curves, radial disk scales L, and velocity dispersions of old disk stars at various galactocentric distances r. Each model includes a three-dimensional collisionless disk and rigid spherical components, whose relative mass μ was treated as a free parameter that differed from simulation to simulation. The observed disk stellar velocity dispersions were assumed to be equal to or (in the general case) greater than the corresponding line-of-sight projections of the simulated values for the adopted μ after the initially unstable disk is heated and arrives at a steady state. A comparison of the simulated and observed rotational velocities and velocity dispersions provides evidence for “light” disks with μ≥2 in the disk (r<4L).  相似文献   

10.
We have used surface photometry data for 100 barred galaxies to determine the UBVRIJHK surface brightnesses and color indices for the bars. Two peaks are observed in the distribution of the average bar B brightnesses: at 21.0m/arcsec2 and 22.2m/arcsec2, characteristic of late-and early-type galaxies, respectively. The average surface-brightness difference between the bar and the galaxy (within the 25.0m/arcsec2 isophote) increases from 1.1m/arcsec2 for SB0 galaxies to 2.3m/arcsec2 for SBc-IBm galaxies. In (U-B)0-(B-V)0, (B-V 0-(V-R 0, and (B-V)0-(V-I)0 two-color diagrams, for all morphological types, the bars are shifted leftward from normal color sequence for galaxies. This deviation is more pronounced for the outer than for the inner regions of the bars. Using evolutionary models, we show that this deviation is due to the scarcity of intermediate-age [(1–9)×109 yrs] stars in bars. Possible origins for this anomalous composition of the stellar population are discussed.  相似文献   

11.
We test the hypothesis put forward by Bosma (1981) that the surface density of dark matter is proportional to the surface density of HI, using decompositions of the rotation curves of a number of galaxies according to the THINGS, along with data for the galaxy NGC 6822. The rotation curves of these galaxies can be explained by assuming the existence of a massive gaseous disk in the absence of a dark halo, although the proportionality factor ??dark/??HI between the surface densities of dark matter and HI is different for different galaxies. However, there emerges the problem of the gravitational stability of galaxies whose stellar-velocity dispersions have been estimated, if the thickness of the dark-matter disk is similar to or less than the thickness of the stellar disk. The proportionality between ?? dark and ??HI is probably due to the fact that the radial profiles of ??HI for galaxies with flat rotational curves are close to the critical density of a gravitationally stable gaseous layer (??HI ?? R ?1), and ??dark(R) for a pseudo-isothermal halo obeys the same law.  相似文献   

12.
Stellar photometry of nearby irregular galaxies of the Local Group is used to identify and study the young and old stellar populations of these galaxies. An analysis of the spatial distributions of stars of different ages in face-on galaxies shows that the young stellar populations in irregular galaxies are concentrated toward the center, and form local inhomogeneities in star-forming regions, while the old stellar populations—red giants—form extended structures around the irregular galaxies. The sizes of these structures exceed the visible sizes of the galaxies at the 25m/arcsec2 isophote by a factor of two to three. The surface density of the red giants decreases exponentially from the center toward the edge, similar to the disk components in spiral galaxies.  相似文献   

13.
Hubble Space Telescope archive data are used to perform photometry of stars in seven fields at the center and periphery of the galaxy NGC 2366. The variation of the number density of stars of various ages with galactocentric radius and along the minor axis of the galaxy are determined. The boundaries of the thin and thick disks of the galaxy are found. The inferred sizes of the subsystems of NGC 2366 (Z thin = 4 kpc and Z thick = 8 kpc for the thin and thick disks, respectively) are more typical for spiral galaxies. Evidence for a stellar halo is found at the periphery of NGC 2366 beyond the thick disk of the galaxy.  相似文献   

14.
Data from the 6-m telescope of the Special Astrophysical Observatory obtained using the SCORPIO instrument in imaging mode are used to study member galaxies of the NGC 2300 group. Surface photometry has been carried out for the five largest galaxies in the group, whose isophotal parameters and the parameters of their large-scale structural components (disks and bulges) have been determined. The morphological type of the central galaxy in the group has been refined, and shown to be elliptical. Studies of structural features in non-central disk galaxies have revealed an enhanced percent of bars: bars were found in all disk galaxies of this group, with all of these being compact structures. The similarity of the structural features of the disks of the group galaxies suggests that these disksmay be being restructured in the process of the current merger of the two X-ray subgroups comprising NGC 2300: the group NGC 2300 itself and the group NGC 2276.  相似文献   

15.
Stellar photometry obtained using the Hubble Space Telescope is used to study the distributions of the number densities of stars of various ages in 12 irregular and dwarf spiral galaxies viewed edge-on. Two subsystems can be distinguished in all the galaxies: a thin disk comprised of young stars and a thick disk containing a large fraction of old stars (primarily red giants) in the system. Variations of the stellar number density in the thin and thick disks in the Z direction perpendicular to the plane of the galaxy follow an exponential law. The size of the thin disk corresponds to the visible size of the galaxy at the μ = 25 mag/arcsec2 isophote, while the thick disk is a factor of two to three larger. In addition to a thick disk, the massive irregular galaxy M82 also has a more extended stellar halo that is flattened at the galactic poles. The results of our previous study of 12 face-on galaxies are used together with the new results presented here to construct an empirical model for the stellar structure of irregular galaxies. Original Russian Text ? N.A. Tikhonov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 7, pp. 579–588.  相似文献   

16.
The four well studied spiral galaxies M33, M81, M100, and M101 are used to analyze the dependences of the star-formation rate (SFR) and star-formation efficiency (SFE = SFR/M gas ) on galactocentric distance R and the photometric and some kinematic parameters of galactic disks. The dependences SFR(R) were estimated based on UV and far-infrared data using published extinction-corrected UV brightness profiles of the galaxies. The local SFE values are most closely related to the surface brightness (density) of the galactic disk at a given R, with this dependence being the same for all four galaxies (except for their central regions). In order to explain the observed disk densities in terms of a simple conservative model (“toy model”) for the evolution of the gas density, the local value of the parameter N in the Schmidt law for the disk (SFR ~ σ gas N ) must not exceed unity. In this case, the observed dependences σ gas (R) and SFE(R) can be matched assuming that accretion is occuring in the central regions of the disks.  相似文献   

17.
We consider the evolution of galaxies in dense galactic clusters. Observations and theoretical estimates indicate that this evolution may be specified to a large extent by collisions between galaxies, as well as interactions between the gaseous components of disk galaxies and intergalactic gas. We analyze collisions between disk galaxies with gaseous components using a simple model based on a comparison of the duration of a collision and the characteristic cooling time for the gas heated by the collision, and also of the relative masses of stars and gas in the colliding disk galaxies. This model is used to analyze scenarios for collisions between disk galaxies with various masses as a function of their relative velocities. Our analysis indicates that galaxies can merge, lose one or both of their gaseous components, or totally disintegrate as a result of a collision; ultimately, a new galaxy may form from the gas lost by the colliding galaxies. Disk galaxies with mass M G and velocities exceeding ~300 (M G/1010 M )1/2 km/s in intergalactic gas in clusters with densities ~10?27 g/cm3 can lose their gas due to the pressure of inflowing intergalactic gas, thereby developing into E(SO) galaxies.  相似文献   

18.
The condition for gravitational stability of the stellar disks of the galaxies NGC 936 and NGC 3198 makes maximum disk models unacceptable. We present mass estimates for these objects' spheroidal components. The mass of the dark halo of NGC 3198, within four disk radial scale lengths, exceeds its disk mass by a factor of 1.6 to 2. The masses of the disk and spheroidal subsystem (halo + bulge), within four radial scale lengths, are approximately the same for NGC 936.  相似文献   

19.
This is the first paper in a project aimed at analyzing relations between the masses of supermassive black holes or nuclear clusters in galaxies and the kinematic features of the host galaxies. We present long-slit spectroscopic observations of galaxies obtained on the 6-m telescope of the Special Astrophysical Observatory using the SCORPIO focal reducer. Radial profiles of the line-of-sight velocities and velocity dispersions of the stellar populations were obtained for seven galaxies with known masses of their supermassive black holes (Mkn 79, Mkn 279, NGC 2787, NGC 3245, NGC 3516, NGC 7457, and NGC 7469), and also for one galaxy with a nuclear cluster (NGC 428). Velocity profiles of the emitting gas were obtained for some of these galaxies as well. We present preliminary galactic rotation curves derived from these data.  相似文献   

20.
BV RI data are presented for the majority of steep-spectrum objects in the RC catalog with m R <23.5m. Previously developed programs are applied to these data to estimate the redshifts and ages of the stellar systems of the host galaxies. Applying this program to the color data (BV RI JHK) for distant radio galaxies with spectroscopic redshifts indicates that this approach provides accurate estimates of the redshifts of such radio galaxies, close to those obtained using field galaxies (~20%). The age estimates are much less trustworthy, but a lower limit to the ages of objects that are not very distant (z<1.5) can be determined with certainty. We have identi fied several galaxies whose formal ages exceed the age of the Universe at the corresponding z in simple Cold Dark Matter models for the Universe. The possibility of using such objects to elucidate the role of “dark energy” is discussed. This paradox disappears in models with cosmological constants (Λ terms) equal to 0.6–0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号