首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elemental (carbon and nitrogen) ratios and stable carbon and nitrogen isotope ratios (δ13C and δ15N) are examined in sediments and suspended particulate matter from Hudson Bay to study the influence of river inputs and autochthonous production on organic matter distribution. River-derived particulate organic matter (POM) is heterogeneous, nitrogen-poor and isotopically depleted, consistent with expectations for OM derived from terrestrial C3 vascular plant sources, and distinct from marine OM sources. Both δ13C and C/N source signatures seem to be transmitted to sediments with little or no modification, therefore making good tracers for terrigenous OM in Hudson Bay. They suggest progressively larger contributions from marine sources with distance from shore and secondarily from south to north, which broadly corresponds to the distribution of river inputs to Hudson Bay. Processes other than mixing of marine and terrigenous OM influence sedimentary δ15N values, including variability in the δ15N of phytoplankton in the Bay's surface waters due to differences in relative nitrate utilization, and post-production processes, which bring about an apparently constant 15N-enrichment between surface waters and underlying sediments. Variability in the δ15N of phytoplankton in the Bay's surface waters, in contrast, seems to be organized spatially with a pattern that suggests an inshore–offshore difference in surface water nitrogen conditions (open- vs. closed-system) and hence the δ15N value of phytoplankton. The δ15N patterns, supported by a simple nitrate box-model budget, suggest that in inshore regions of Hudson Bay, upwelling of deep, nutrient-rich waters replenishes surface nitrate, resulting in ‘open system’ conditions which tend to maintain nitrate δ15N at low and constant values, and these values are reflected in the sinking detritus. River inflow, which is constrained to inshore regions of Hudson Bay, appears to be a relatively minor source of nitrate compared to upwelling of deep waters. However, river inflow may contribute indirectly to enhanced inshore nutrient supply by supporting large-scale estuarine circulation and consequently entrainment and upwelling of deep water in this area. In contrast to previous proposals that Hudson Bay is oligotrophic because it receives too much fresh water (Dunbar, 1993), our results support most of the primary production being organized around the margin of the Bay, where river flow is constrained.  相似文献   

2.
Organic matter (OM) such as organic nitrogen plays a substantial role in the global biogeochemical cycling of bio‐reactive components—amino acids (AA) in aquatic environments. Spatial and temporal variations in source, diagenesis, and fate of organic nitrogen such as AA in sediments of small tropical rivers and the role of oxbow/meandering loops under changing climatic conditions are poorly investigated. This study assessed the spatial and seasonal variations in OM composition, source, and diagenesis of a tropical small mountainous river—Netravati River, India, for 1 year. Water samples were determined for suspended particulate matter, and surface sediments were examined for bulk parameters, surface area (SA), and the L‐ and D‐enantiomers of AA. The L‐ and D‐enantiomers of AA displayed subtle seasonal variations in composition and depicted varying degrees of diagenesis. The concentration of D‐enantiomer of AA was high and showed substantial contributions from bacteria, terrestrial source, and in situ production. The D‐arginine was the most abundant D‐enantiomer of AA in the study area, possibly due to extracellular secretion by bacterial species and adsorption onto sediments, and thus, it was protected from degradation. Degradation index was more negative at the oxbow and meandering loop stations during the dry season suggesting that local geomorphologic settings steer the diagenesis of OM within the river. A negative relationship between gamma‐aminobutyric acid and organic carbon:surface area (OC:SA) ratio and a positive correlation between tyrosine and OC:SA ratio suggested accelerated loss of OM. Furthermore, the concentrations of most bulk parameters were higher in the lower reaches during monsoon and premonsoon seasons. Taken together, changes in seasons have an operational control in distinguishing the composition, source, and diagenesis of spatial OM distribution. Moreover, oxbows and river meandering loops influence the diagenetic processes in small tropical river systems.  相似文献   

3.
Accumulation rates of marine and terrigenous organic carbon in the continental margin sediments off southwestern Taiwan were estimated from the measured concentrations and isotopic compositions of total organic carbon (TOC) and previously reported sedimentation rates. Surficial sediments were collected from the study area spanning from the narrow shelf near the Kaoping River mouth to the deep slope with depths reaching almost 3000 m. The average sediment loading of Kaoping River is 17 Mt/yr, which yields high sediment accumulation rates ranging from 0.08 to 1.44 g cm−2 yr−1 in the continental margin. About half of the discharged sediments were deposited on the margin within 120 km of the river mouth. Carbon isotopic compositions of terrestrial and marine end-members of organic matter were determined, respectively, based on suspended particulate matter (SPM) collected from three major rivers in the southwestern Taiwan and from an offshore station. All samples were analyzed for the TOC content and its isotopic composition (δ13Corg). The SPM samples were also analyzed for the total nitrogen (TN) content. TOC content in marine sediments ranges from 0.45% to 1.35% with the highest values on the upper slope near the Kaoping River mouth. The TOC/TN ratio of the SPM samples from the offshore station is 6.8±0.6, almost identical to the Redfield ratio, indicating their predominantly marine origin; their δ13Corg values are also typically marine with a mean of −21.5±0.3‰. The riverine SPM samples exhibit typical terrestrial δ13Corg values around −25‰. The δ13Corg values of surficial sediments range from −24.8‰ to −21.2‰, showing a distribution pattern influenced by inputs from the Kaoping River. The relative contributions from marine and terrestrial sources to sedimentary organic carbon were determined by the isotope mixing model with end-member compositions derived from the riverine and marine SPM. High fluvial sediment inputs lead to efficient trapping of organic carbon over a wide range of water depth in this continental margin. The marine organic accumulation rate ranges from 1.6 to 70 g C m−2 yr−1 with an area weighted mean of 4.2 g C m−2 yr−1, which is on a par with the mean terrestrial contribution and accounts for 2.3% of mean primary production. The depth-dependent accumulation rate of marine organic carbon can be simulated with a function involving primary productivity and mineral accumulation rate, which may be applicable to other continental margins with high sedimentation rates. Away from the nearshore area, the content of terrigenous organic carbon in surficial sediments decreases with distance from the river mouth, indicating its degradation in marine environments.  相似文献   

4.
The distribution of “ash” (the non-combustible fraction of marine suspended matter) and concentrations of particulate Al, Ca, Fe, Cr, Ni, Cu, Sr and234Th in surface waters and of210Pb,230Th and234Th in two vertical profiles (385–4400 m) of the Indian Ocean are reported.The ash concentrations in surface waters follow the primary productivity pattern, with higher abundances in samples south of 40°S and lower concentrations in the equatorial and subtropical regions. Opaline silica and CaCO3 are the dominant components of the ash in samples from >40°S and from 7°N to 39°S, respectively. Aluminosilicates are only a minor constituent of the surface particulate matter. The metal/Al ratios in the surface particles are significantly higher compared to their corresponding crustal ratios for all the metals analyzed in this work. Comparison of enrichment factors between marine aerosols, plankton and surface oceanic particles, seem to indicate that this high metal/Al ratio in surface particles most likely arises from their involvement in marine biogeochemical cycles. Particulate234Th activity in surface waters parallels the ash abundance implying that its scavenging efficiency from surface waters depends on the particulate concentration.The particulate230Th and210Pb concentration profiles increase monotonously with depth. It is difficult to ascribe this increase to a process other than the in-situ vertical scavenging of230Th and210Pb from the water column by settling particles. The mean settling velocities of particles calculated from the particulate230Th data using a one-dimensional settling model is about 2 × 10?3 cm/s. The settling velocity computed from the particulate230Th profiles does not appear to be compatible with the particulate210Pb depth profiles; one possible explanation to account for the disparity would be that230Th and210Pb are scavenged by different size populations of particles.On the whole, the geographic distribution of particulate matter, their composition and settling velocities in the Atlantic, Pacific and Indian Oceans are similar indicating that they are controlled by quite similar processes in the marine hydrosphere.  相似文献   

5.
Ba distribution in the ocean correlates linearly with that of 226Ra, reflecting little fractionation of the two elements in their uptake by marine organisms. The weight ratio of 226Ra/Ba is estimated to be (0.714 ± 0.08) × 10?8. A wide range of Ba/Si and Ra/Si values is noted in siliceous plankton collected from different oceans. This corraborates with the observations that, although silica co-varies with Ba and226Ra, the Ba/Si and226Ra/Si ratios in seawater vary from one area to another. Sediment pore water contains higher Ba concentrations than the overlying seawater. The resulting diffusive flux of Ba through the sediment-sea interface is estimated to be no more than 20% of the river input. The apparent oversaturation of dissolved Ba in pore fluids with respect to barite supports the idea that complexing of Ba with organic ligands may be important. Box model calculations show that: (1) on a per unit area basis, 226Ra flux from the continental shelf sediments is higher than that from the deep sea floor; (2) in the deep ocean, the magnitude of diffusive input of 226Ra from sediments is about equal to the loss due to radioactive decay.  相似文献   

6.
Total phosphorus and its main forms: dissolved mineral, dissolved organic, particulate organic and particulate mineral in the vertical water column of three subalpine lakes of various types in Italy, has been estimated during the winter-vernal season. The range of variation in the phosphorus content in these waters was as follows: total phosphorus 16 ± 2860 μg/1 PO4, dissolved mineral phosphorus 4 ± 1040 μg/l PO4, dissolved organic phosphorus 1 ± 160μg/l PO4, particulate organic phosphorus 0 ± 290 μg/l PO4 and particulate mineral phosphorus 1 ± 100 μg/l PO4, Generally the content of total phosphorus and dissolved mineral phosphorus (phosphates) increased with the degree of eutrophy with the depth and with the progress of the vernal season towards the summer stagnation time. The amount of phosphates increased in water with the depletion of oxygen, both in the verical water column and with the progress of stagnation time. The amounts of dissolved organic phosphorus decressed with the depth of the vertical water column whereas the dissolved mineral phosphorus increased. The development of the particulate organic phosphorus stratification in the vertical water column was clearly visible in the eutrophic lake. The quantities of total phosphorus and its main component, dissolved mineral phosphorus, decreased evidently from January to May in all three lakes, mostly in the eutrophic lake. The reason of this decrease is sorption by lake sediments and to a certain degree sedimentation of phosphorus sorbed by ferric hydroxide. The increase of dissolved mineral phosphorus and that of total phosphorus in the vertical water column and with the progress of summer stagnation had as a reason the liberation of phosphorus from sediments, and not so much decomposition of sedimentating plankton or dissolved organic phosphorus. The share of single (mean) values of phosphorus forms in the total phosphorus was as follows: In the oligotrophic lake the share of particulate mineral phosphorus was extremely high in March (21% of the total), probably because of the inflow of the melting waters from the drainage area. The development of vertical stratification in waters of three subalpine Italian lakes at the end of the vernal season (May) indicates the quantitative prevailing of dissolved mineral phosphorus with its increase with the depth and domination of dissolved organic phosphorus in the trophogenic zone.  相似文献   

7.
Surface sediments samples were collected from 9 stations of the Cochin estuary during the monsoon, post-monsoon and pre-monsoon seasons and were analyzed for grain size, total organic carbon (OC), total nitrogen (TN) and stable isotopic ratios of carbon (δ13C) and nitrogen (δ15N) to identify major sources of organic matter in surface sediments. Sediment grain size is found to be the key factor influencing the organic matter accumulation in surface sediments. The δ13C values ranges from ?27.5‰ to ?21.7‰ in surface sediments with a gradual increase from inner part of the estuary to the seaward side that suggest an increasing contribution of marine autogenous organic matter towards the seaward side. The δ15N value varies between 3.1‰ and 6.7‰ and it exhibits complex spatial and seasonal distributions in the study area. It is found that the dynamic cycling of nitrogen through various biogeochemical and organic matter degradation processes modifies the OC/TN ratios and δ15N to a considerable degree. The fraction of terrestrial organic matter in the total organic matter pool ranges from 13% to 74% in the surface sediments as estimated by δ13C based two end member mixing model.  相似文献   

8.
By modelling the observed distribution of210Pb and210Po in surface waters of the Pacific, residence times relative to particulate removal are determined. For the center of the North Pacific gyre these are τPo = 0.6years andτPb = 1.7years. The surface ocean τPb is determined by particulate transport rather than plankton settling. The fact that it is about two orders of magnitude smaller than τPb for the deep ocean implies a sharp change in the adsorptive quality of particles during descent through the water column.  相似文献   

9.
Sediment traps were deployed in the Gulf of Papua in June–July 1997, to determine fluxes of organic matter and inorganic elements from the photic zone to deeper waters at the base of the continental slope and in the northern Coral Sea. Three stations, ranging from 900 to 1500 m depth, had “shallow” traps at 300 m below the water surface and “deep” traps set 100 m above the bottom. Infiltrex II water samplers collected particulate and dissolved organic matter from the Fly, Purari and Kikori rivers, and near-surface water from the shelf of the Gulf of Papua. Samples were analysed for molecular organic biomarkers to estimate the sources of organic carbon and its cycling processes.Dry weight fluxes from the shallow traps ranged from 115 to 181 mg m−2 day−1 and particulate organic carbon (POC) fluxes ranged from 1.2 to 1.9 mM OC m−2 d−1 with molar organic carbon to particulate nitrogen ratios (C/N) ranging from 6.0 to 6.5. Fluxes in deep traps were likely influenced by both early diagenesis and entrapment of resuspended shelf sediments. Dry weight fluxes in deep traps ranged from 106 to 574 mg m−2 day−1 and POC fluxes ranged from 0.6 to 1.5 mM OC m−2 d−1, with C/N ratios ranging from 8.5 to 10.8. 13C/12C ratios were −20.2‰ to −21.7‰ in all trap samples, indicating that most of the settling POC was “marine-derived”. Shallow traps had δ15N values of 6.3‰ to 7.2‰ while the values in deep traps were 4.9–5.0‰, indicating the N-rich near-surface OC was less degraded than that in the deep traps. The biogenic lipids consisted of hydrocarbon, sterol and fatty acid biomarkers indicative of marine zooplankton, phytoplankton and bacteria. Sterol markers for diatoms and dinoflagellates were abundant in the water samples. Highly branched isoprenoid alkenes, usually attributable to diatoms, were also detected in both water and shallow traps. Traces of C26–C34 n-alcohols indicative of land–plant biomarkers, were found in river water samples and in the shallow sediment traps. A large unresolved complex mixture (UCM) of hydrocarbons, and a uniform distribution of n-alkanes, indicative of petroleum hydrocarbons, were also detected in the traps. Hopane and sterane biomarkers detected in the trap oil were characteristic of a marine carbonate source, and the aromatic hydrocarbon composition distinguished at least two different oil signatures.We concluded that mass and POC fluxes were similar to those reported for other continental shelves and marginal oceans in tropical and subtropical regions. There was a dramatic decrease in POC as particles sank, due to zooplankton repackaging and photochemical and bacterial decomposition. Carbon isotopic and biomarker patterns showed most of the POC in the sediment traps was marine-sourced with only traces of terrestrial input. There was a significant flux of petroleum, which may signal the existence of natural petroleum seeps in this region.  相似文献   

10.
《Marine pollution bulletin》2009,58(6-12):403-408
Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Qmax) of the marine sediments ranges from 53 to 79 mg g−1, which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H2O2 oxidation, and the Qmax then decreases to a range between 13 and 22 mg g−1. The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.  相似文献   

11.
The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhône River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhône River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7±0.4 mmol O2 m−2 d−1 at the continental shelf break to 19.3±0.5 mmol O2 m−2 d−1 in front of the Rhône River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhône mouth. The highest oxygen uptake rate was observed at 63 m on the Rhône prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhône River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhône prodelta are enriched in organic carbon (2–2.2%) relative to the continental shelf sediments (<1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r2=0.98, n=4). South-westward of the Rhône River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhône River, sedimentation of marine organic matter and organic material redeposition after resuspension events.  相似文献   

12.
Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen (δ15Ninorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15Ninorg in the Atlantic–Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15Norg signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.  相似文献   

13.
Total organic carbon (TOC) and biogenic silica (opal) content, elemental (C/N) and isotopic (δ13C, δ15N) composition of organic matter and the content of lipid biomarkers derived from both marine and terrestrial sources constrain relative contributions from marine productivity and continental erosion to surface sediments throughout coastal SE Alaska (54°N to 61°N). TOC and opal content are very high (up to 8% and 33% by weight, respectively) in fjords and inlets south of Icy Strait (∼58°N) and uniformly low at offshore sites to the south, and at both offshore and inland sites to the north (averaging 0.6±0.3% and 2.3±1.8%, respectively). TOC and opal mass accumulation rates (MARs, based on bulk density and 210Pb-derived sediment MAR) suggest dilution with terrigenous, inorganic detrital materials accounts for the low concentrations of both biogenic phases in sediments from the glacial tidewater fjords of Muir and Yakutat Bays but not elsewhere. C/N, δ13C, and δ15N indicate a dominant marine origin for organic matter deposited at most sites. This conclusion implicates elevated primary productivity in inland waters to the south with diatoms, based on opal results, being the dominant contributor. A very significant terrestrial organic fraction (25–50%) is contained in sediments deposited on the continental shelf to the north of 58°N. Hydrocarbon biomarkers indicate the terrestrial fraction in sediments from this region is represented by old organic matter (kerogen) likely contained within riverborne particles eroding from now heavily glaciated adjacent landscapes. In sediment to the south, the terrestrial fraction is traced to modern soil organic matter eroded from the now non-glaciated, heavily forested adjacent landscape. Our study provides a framework to guide future investigations of short- (anthropogenic) to long- (Holocene) term environmental and/or climate change in this region through down-core, stratigraphic analysis.  相似文献   

14.
Quantitative determinations of helium and other noble gas concentrations in pore waters of marine sediments permit the calculation of helium fluxes out of the sedimentary column. Values of 1.1 and 6.4 × 104 atoms/cm2 sec were found for two locations in the northeast Pacific. These fluxes are one to two orders of magnitude less than those based on theoretical degassing models of the earth or on measurements of excess helium in the deep ocean water.  相似文献   

15.
We report here on particulate and dissolved210Pb profiles at 16 stations, and on total210Pb profiles at 3 stations, all occupied during the Pacific GEOSECS expedition. Comparison with measurements at Yale on GEOSECS library samples indicates that during separation of particulate lead from dissolved lead, our filtered water samples suffered some loss of210Pb in the filtration system; this effect appears to have reduced the dissolved210Pb activities by ~ 20% in stations where the water was filtered. However, for these first Pacific data on the210Pb distribution between the two phases, this effect does not significantly interfere with our recognition of the major features of both particulate and dissolved210Pb distributions.The dissolved210Pb profiles in general vary geographically, following the226Ra profiles. In deep water,226Ra increases northward and eastward from the southwest Pacific, from ~ 22dpm/100kg, to over 40 dpm/100 kg in the northeast Pacific. Our dissolved210Pb profiles show a similar increase in deep water, varying from about 10 to 20 dpm/100 kg along this line, and are commonly characterized by a mid-depth maximum. This210Pb maximum reflects the mid-depth226Ra maximum of the Pacific Deep Water observed along the western boundary current.In surface water at low latitudes there is a significant210Pb flux from the atmosphere, which produces a210Pb/226Ra activity ratio generally greater than unity. This flux penetrates as deep as 600 m, as indicated by an “induced”210Pb minimum caused by the surface maximum. The surface water210Pb excess decreases toward high southern latitudes and vanishes in the Circumpolar region.The particulate210Pb profiles show a general increase with depth, from ~ 0.3dpm/100kg in subsurface water to ~ 1.5dpm/100kg in bottom water, with or without a mid-depth maximum that reflects the226Ra or dissolved210Pb maximum. The particulate210Pb normally comprises about 2% of the total210Pb in subsurface water, and this fraction increases to about 10% near the bottom. As the filtration loss is not taken into account, the fraction of particulate210Pb quoted here is an upper limit. Since the particulate matter concentrations are quite uniform in the water column below a few hundred meters, the210Pb activity of the particulate matter also increases with depth. The particulate matter has a210Pb concentration of ~ 100dpm/g in subsurface water, but the concentration increases to ~ 500dpm/g or more toward the bottom. This indicates that there is a cumulative adsorption of Pb onto the suspended particles as they are sinking through the water column.  相似文献   

16.
226Ra,210Pb and210Po were measured in oceanic profiles at two stations near the Bonin and Kurile trenches.210Po is depleted by 50% on average relative to210Pb in the surface water. In the deep water,210Pb is about 25% deficient relative to226Ra. Based on the deficiency,210Pb residence time with respect to removal by particulate matter was estimated to be less than 96 years in the deep water.210Pb deficiency in the bottom water was significantly greater than that of the adjacent deep water, indicating more effective removal near or at the bottom interface.210Pb,210Po and Th appear to have similar overall rate constants of particulate removal throughout the water column.  相似文献   

17.
Sinking particulate material collected from Nansha Yongshu reef lagoon and the continental shelf of the East China Sea by sediment traps has been analyzed and studied for the first time using organic geochemical method. The results show that about half of the sinking particulate organic matter in the two study areas are consumed before reaching the depth of 5 m to the sea floor and the degree of this consumption in Yongshu reef lagoon is larger than that in the continental shelf of the East China Sea. The distributions of hydrocarbons and fatty acids indicate that the minor difference of biological sources of sinking particulate organic matter exists between Yongshu reef lagoon and the continental shelf of the East China Sea, but they mainly come from marine plankton. Stronger biological and biochemical transformations of sinking particulate organic matter are also observed and the intensity of this transformation in Yongshu reef lagoon is greater than that in the continental shelf of the East China Sea. It is found that the occurrence of C25 highly branched isoprenoid (HBI) diene may be related to the composition of diatom species.  相似文献   

18.
The present work aimed at studying the origin of particulate organic matter in Guanabara Bay and in some rivers of the Guanabara basin by using elemental composition, isotopic ratios (δ13C and δ15N) and molecular markers (sterols) in samples collected in two periods (winter and summer). Elemental and isotopic compositions were determined by dry combustion and mass spectrometry, respectively, while sterols were investigated by GC–FID and GC–MS. Higher sterol concentrations were present in the north-western part of the bay in winter (5.10–23.5 μg L–1). The high abundance of algal sterols (26–57% of total sterols), the elemental composition (C/N=6–8) and the isotopic signatures (δ13C=−21.3‰ to −15.1‰ and δ15N=+7.3‰ to +11.1‰) suggested the predominance of autochthonous organic matter, as expected for an eutrophic bay, although seasonal variation in phytoplankton activity was observed. Coprostanol concentration (fecal sterol) was at least one order of magnitude higher in the particulate material from fluvial samples (4.65–55.98 μg L–1) than in the bay waters (<0.33 μg L–1). This could be ascribed to a combination of factors including efficient particle removal to sediments in the estuarine transition zone, dilution with bay water and bacterial degradation during particle transport in the water column.  相似文献   

19.
The Western Harbor of Alexandria, the largest harbor of Egypt on the Mediterranean Sea, receives different internal and external untreated pollutants affecting dramatically its water, sediments and biota. Surface and bottom water samples were collected bimonthly from this harbor for studying vertical, regional and monthly distributions of total suspended matter (TSM), total dissolved lead (TDPb) and total particulate lead (TPPb). The high surface TSM values coincided with air-borne dust, organic aggregates, plankton productivity and discharged wastes. The high TSM averages in winter resulted mainly from turbulence of the water column by wind action. The highest averages of TDPb in the petroleum and coal basins in the Western Harbor reflect their effects on the water column, while the lowest averages of TDPb and TPPb were found at a location far away from pollution sources. For the water column, the maximum and minimum monthly averages of TPPb and TDPb respectively in June reflect the increase in the rate of lead uptake by phytoplankton abundant in summer, favored by temperature elevation. The annual mean concentration of TPPb was nearly double that of TDPb, indicating that lead was transported to the Western Harbor mainly in particulate form. This reflects the high TSM content in the harbor water onto which a considerable part of lead was adsorbed.  相似文献   

20.
Barite particles are a universal component of suspended matter in the Atlantic and Pacific Oceans. This is demonstrated by scanning electron microscope and electron microprobe analyses of samples collected during the GEOSECS program. These discrete particles, about 1 μm in diameter, account for by far the greatest part of the total particulate barium of most of the filters collected at different depths. Total particulate barium (mean value: 20 ng/kg seawater) was measured on the same filters by instrumental neutron activation analysis.Several observations indicate that biochemical, rather than purely chemical, processes are involved in the formation of the BaSO4 mineral in the water column. Sr/Ba molar ratios among the individual barite grains, particularly from surface waters are extremely variable, which would not be anticipated for purely chemical interactions. Barite crystals occurring within fecal debris have been observed throughout the water column. Within such debris decomposition of the abundant organic matter may provide the micro-environment predicted as necessary for the precipitation of BaSO4. Finally, a strong correlation between nutrient content and particulate barium is found in the upper 1000 m of the water column, which also suggests a control of barite formation by biota.Some of the barite dissolves at depth in the water column. Dissolution rates were calculable for two GEOSECS stations, from which a dissolved barium flux of 0.4 μg/cm2 yr was deduced. This figure is of the same order as the dissolved barium flux calculable from the barium content and known dissolution rates of calcareous and siliceous tests: approximately 0.5 μg/cm2 yr. These fluxes represent the largest source of dissolved barium in the water column, the other being river input (0.6 μg/cm2 yr). This supports the contention that the barium in the water column is mostly recycled. The residual flux of barite-Ba reaching the sea floor is of about equal importance as the flux of barium associated with fast-settling fecal material. These two sources together are almost sufficient to account for the total sedimentation rate of barium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号