首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sidereal daily rotation of the Sun, (), depends on the data used. From an appropriate selection of the data — sunspots with regular motion — it is found that ()=14.31–2.70 sin2 , where denotes the heliographic latitude. Moreover, it seems that there is a variation, of the order of 3%, with the solar activity.  相似文献   

2.
We describe a method for the analysis of magnetic data taken daily at the Vacuum Telescope at Kitt Peak. In this technique, accurate position differences of very small magnetic features on the solar surface outside active regions are determined from one day to the next by a cross-correlation analysis. In order to minimize systematic errors, a number of corrections are applied to the data for effects originating in the instrument and in the Earth's atmosphere. The resulting maps of solar latitude vs central meridian distance are cross-correlated from one day to the next to determine daily motions in longitude and latitude. Some examples of rotation and meridional motion results are presented. For the months of May 1988 and October–November 1987, we find rotation coefficients A = 2.894 ± 0.011, B = - 0.428 ± 0.070, and C = -0.370 ± 0.077 in rad s–1 from the expansion = A + B sin2 + C sin4, where is the latitude. The differential rotation curve for this interval is essentially flat within 20 deg of the equator in these intervals. For the same intervals we find a poleward meridional motion a = 16.0 ± 2.8 m sec -1 from the relation v = a sin, where v is the line-of-sight velocity.Operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

3.
Frances Tang 《Solar physics》1981,69(2):399-404
Rotation rate of 19 high latitude (28–44°) short-lived sunspots collected in 1978–1979 are compared with Newton and Nunn's (1951) recurrent spots rate. To reduce the effect of proper motion in spots of new regions, our measurements start only when the spots have matured or very nearly so. Compared with the expression = 14.38–2.96 sin2 derived from 1934–44 data by Newton and Nunn, our results show a slightly lower differential rotation in the 28–40° zone. They are in better agreement with the Greenwich average results of the five solar cycles beginning 1878: = 14.37–2.60 sin2 .Hale Observatories are operated jointly by the Carnegie Institution of Washington and the California Institute of Technology.  相似文献   

4.
The occurrence frequency distribution of sunspots in different magnetic flux values has been examined. The number of sunspots decreases as -1.9 for sunspots with magnetic flux greater than 3 × 1021 Maxwell, where is the said flux of a sunspot.  相似文献   

5.
Tian  Lirong  Liu  Yang  Wang  Huaning 《Solar physics》2003,215(2):281-293
Magnetogram data of 517 bipolar active regions are analyzed to study latitude, magnetic flux, polarity separation dependence of tilt angle of the active regions with well-defined bipolar magnetic configurations. The data were obtained at Huairou Solar Observing Station in Beijing during 1988 to October 2001. By statistical analysis, it is found: (1) The tilt angle () is a function of the latitude (). Our observed result, sin=0.5 sin, is in good agreement with that obtained by Wang and Sheeley (1991). (2) The tilt angle is a function of the magnetic flux. The tilt angle increases (decreases) with flux increasing when the flux is smaller (larger) than 5×1021 Mx. (3) The tilt angle is a function of the magnetic polarity separation. The tilt angle increases (decreases) with the separation increasing when the separation is smaller (larger) than 8×109 cm. (4) The magnetic flux ( in 1020 Mx) is correlated to the magnetic polarity separation (d in Mm), following 20d 1.15. The result is close to the observed result of Wang and Sheeley (1989), 20d 1.3. (5) The tilt fluctuations are independent of the latitude, but depend slightly on the separation, which is similar to the result obtained by Fisher, Fan, and Howard (1995). (6) The distribution function of the ratio of net magnetic flux to total magnetic flux is almost centered around zero net flux. The imbalance of magnetic flux is lower than 10% for 47% of our samples; 31% of active regions are in imbalance of the magnetic flux between 10% and 20%.  相似文献   

6.
We present an attempt for an extension of the modified Boltzmann model, which was introduced by Callebautet al. (1982) as an improvement of the polytropic models, to the case of chemically-heterogeneous stars in equilibrium, containing H and He, by proposing a density profile of the formp=C 1 T N exp (–H m(–*)/kT) +C 2 T N exp (–He m(–*)/kT. Analytical properties are derived and numerical as well as analytical arguments are presented for the conclusion that this hypothesis for a density profile imposes an almost constant chemical profile to the model as a whole, thereby making it in this form unsuited for the study of heterogeneous stars. A comparison is made with the former Boltzmann model in the homogeneous limit.  相似文献   

7.
We report measurements of the sunspot rotation rate at high sunspot latitutdes for the years 1966–1968. Ten spots at ¦latitude¦ 28 deg were found in our Mees Solar Observatory H patrol records for this period that are suitable for such a study. On the average we find a sidereal rotation rate of 13.70 ± 0.07 deg day-1 at 31.05 ± 0.01 deg. This result is essentially the same as that obtained by Tang (1980) for the succeeding solar cycle, and significantly larger than Newton and Nunn's (1951) results for the 1934–1944 cycle. Taken together, the full set of measurements in this latitude regime yield a rotation rate in excellent agreement with the result =14°.377–2°.77 sin2, derived by Newton and Nunn from recurrent spots predominatly at lower latitudes throughout the six cycles from 1878–1944.Summer Research Assistant.  相似文献   

8.
A theory of gravitation with a flat background metric and a dynamical variable (variable gravitational constant) is investigated. It is shown that such bimetric scalar-tensor theory (BSTT) generalized GR as all the solutions of GR equations and(x) = constant satisfy BSTT equations, firstly, and BSTT equations contain non-Einstein solutions with the variable, secondly. Due to this fact, the problem on the agreement of BSTT with the observational data is reduced to the problem on the agreement of GR with the observational data and to the interpretation of the solutions with the variable. The latter may prove useful for the prediction of new effects. Examples of such effects are discussed.  相似文献   

9.
Javaraiah  J.  Komm  R.W. 《Solar physics》1999,184(1):41-60
We have looked for periodicities in solar differential rotation on time scales shorter than the 11-year solar cycle through the power- spectrum analysis of the differential rotation parameters determined from Mt. Wilson velocity data (1969–1994) and Greenwich sunspot group data (1879–1976). We represent the differential rotation by a set of Gegenbauer polynomials (()= + (5sin2–1)+ (21sin4–14sin2+1)). For the Mt. Wilson data, we focus on observations obtained after 1981 due to the reduced instrumental noise and have binned the data into intervals of 19 days. We calculated annual averages for the sunspot data to reduce the uncertainty and corrected for outliers occuring during solar cycle minima. The power spectrum of the photospheric mean rotation , determined from the velocity data during 1982–1994, shows peaks at the periods of 6.7–4.4 yr, 2.2 ± 0.4 yr, 1.2 ± 0.2 yr, and 243 ± 10 day with 99.9% confidence level, which are similar to periods found in other indicators of solar activity suggesting that they are of solar origin. However, this result has to be confirmed with other techniques and longer data sets. The 11-yr periodicity is insignificant or absent in . The power spectra of the differential rotation parameters and , determined from the same subset, show only the solar cycle period with a 99.9% confidence level.The time series of determined from the yearly sunspot group data obtained during 1879–1976 is very similar to the corresponding time series of . After correcting for data with large error bars (occurring during cycle minima), we find periods, which are most likely harmonics of the solar cycle, such as 18.3 ± 3.0 yr and 7.5 ± 0.5 yr in and confirmed these and the 3.0 ± 0.1 yr period in . The original time series show in addition some shorter periods, absent in the corrected data, representing temporal variations during cycle minimum. Given their large error bars, it is uncertain whether they represent a solar variation or not. The results presented here show considerable differences in the periodicities of and determined from the velocity data and the spot group data. These differences may be explained by assuming that the rotation rates determined from velocity and sunspot data represent the rotation rates of the Sun's surface layers and of somewhat deeper layers.  相似文献   

10.
Cameron  R.  Hopkins  A. 《Solar physics》1998,183(2):263-276
We present a new method for measuring the solar magnetic meridional flow, and provide a comparison with other recent work. We have performed a least-squares fit to azimuthally averaged Mount Wilson Observatory synoptic data encompassing Carrington rotations 1722 to 1929 to produce an estimate of the solar meridional flow. A parametric fit to our results expresses the solar meridional flow as v() = 28.5 sin2.5 cos.  相似文献   

11.
Continuous spectra of the Be objects HD 50138 and HD 51585 have been investigated between 1.6 and 1.2 -1. The infrared gradient IR of HD 50138 (B5eV) is found to be 2.09±0.10, while the typical B5V star And indicates IR=1.17. A B5V (HD 16219) star located at about the same distance as HD 50138 has IR=1.29 and it is shown that interstellar reddening may account for IR between HD 16219 and And. The difference in gradient between HD 50138 and HD 16219 ( IR=0.8) may be explained by a continuous reemission in a lenticular envelope with a radius equal to 4R *. The peculiar object HD 51585 exhibits a B0.5 continuous spectrum, for which the value d logI /d(1/) should be 1.13 according to model atmospheres computations. The distance as derived from color excess leads to disagreement between measured and computed (for a B0.5 star) values of d logI /d(1/). The reddening may be explained by reemission in an envelope the radius of which is smaller than 5R*. In conclusion, the narrowness of the spectral range under consideration does not permit to decide whether the observed reddening is due to recombination to the third level of the hydrogen atom or whether it is part a thermal reemission in a circumstellar cloud at lower temperature, as it has been observed around 10 by various authors.

Les spectres utilisés dans ce travail ont été obtenus à l'aide des téléscopes de 193 cm et 120 cm de l'Observatoire de Haute-Provence (CNRS).  相似文献   

12.
In this paper, we have evaluated solutions for Domain walls with sphericalsymmetry in four and five dimensional space time. Exact solutions ofEinstein equations coupled to scalar field with a potential V() are presented. Here scalar field depends both on radial and timecoordinates. Pressures perpendicular to the wall are taken to benon-zero. The solutions are obtained using functional separability ofmetric coefficients. Also we study the gravitational effects on testparticles.Pacs Nos: 04.20jb, 98.80 Bp  相似文献   

13.
Durney  Bernard R. 《Solar physics》2000,197(2):215-226
The integrals, Ii(t) = GL ui j × B i dv over the volume GL are calculated in a dynamo model of the Babcock–Leighton type studied earlier. Here, GL is the generating layer for the solar toroidal magnetic field, located at the base of the solar convection zone (SCZ); i=r, , , stands for the radial, latitudinal, and azimuthal coordinates respectively; j = (4)-1 × B, where B is the magnetic field; ur,u are the components of the meridional motion, and u is the differential rotation. During a ten-year cycle the energy cycle I(t)dt needs to be supplied to the azimuthal flow in the GL to compensate for the energy losses due to the Lorentz force. The calculations proceed as follows: for every time step, the maximum value of |B| in the GL is computed. If this value exceeds Bcr (a prescribed field) then there is eruption of a flux tube that rises radially, and reaches the surface at a latitude corresponding to the maximum of |B| (the time of rise is neglected). This flux tube generates a bipolar magnetic region, which is replaced by its equivalent axisymmetric configuration, a magnetic ring doublet. The erupted flux can be multiplied by a factor Ft, i.e., by the number of eruptions per time step. The model is marginally stable and the ensemble of eruptions acts as the source for the poloidal field. The arbitrary parameters Bcr and Ft are determined by matching the flux of a typical solar active region, and of the total erupted flux in a cycle, respectively. If E(B) is the energy, in the GL, of the toroidal magnetic field B = B sin cos , B (constant), then the numerical calculations show that the energy that needs to be supplied to the differential rotation during a ten-year cycle is of the order of E(Bcr), which is considerably smaller than the kinetic energy of differential rotation in the GL. Assuming that these results can be extrapolated to larger values of Bcr, magnetic fields 104 G, could be generated in the upper section of the tachocline that lies below the SCZ (designated by UT). The energy required to generate these 104 G fields during a cycle is of the order of the kinetic energy in the UT.  相似文献   

14.
The zonal structure of the distribution of filaments is considered. The mean latitudes of two filament bands are calculated in each solar hemisphere at the minima of the sunspot cycle in the period 1924–1986: middle latitude 2, m and low latitude 1, m . It is shown that the mean latitude of the filament band 2, m at the minimum -m of the cycle correlates, with = 0.94, with the maximum - M sunspot area S(M) and maximum Wolf number W(M) in the succeeding solar cycle M. It is shown that the mean latitude of the low-latitude filament band 1, m is linearly dependent on the mean latitude filament band 2, m + 1 at the succeeding minimum. We found a correlation of the latitude of the low-latitude filament band 1, m with the maximum sunspot area in the M + 1 cycle. This enables us to predict the power of two succeeding 11-year solar cycles on the basis of the latitude of filament bands at the minimum of activity, 1985–1986: W(22) - 205 ± 10, W(23) - 210 ± 10. The importance of the relationships found for theory and applied aspects is emphasized. An attempt is made to interpret the relationships physically.  相似文献   

15.
We analyzed 689 high-resolution magnetograms taken daily with the NSO Vacuum Telescope on Kitt Peak from 1975 to 1991. Motions in longitude on the solar surface are determined by a one-dimensional crosscorrelation analysis of consecutive day pairs. The main sidereal rotation rate of small magnetic features is best fit by = 2.913(±0.004) – 0.405(±0.027) sin2 – 0.422(±0.030) sin4 , in µrad s–1, where is the latitude. Small features and the large-scale field pattern show the same general cycle dependence; both show a torsional oscillation pattern. Alternating bands of faster and slower rotation travel from higher latitudes toward the equator during the solar cycle in such a way that the faster bands reach the equator at cycle minimum. For the magnetic field pattern, the slower bands coincide with larger widths of the crosscorrelations (corresponding to larger features) and also with zones of enhanced magnetic flux. Active regions thus rotate slower than small magnetic features. This magnetic torsional oscillation resembles the pattern derived from Doppler measurements, but its velocities are larger by a factor of more than 1.5, it lies closer to the equator, and it leads the Doppler pattern by about two years. These differences could be due to different depths at which the different torsional oscillation indicators are rooted.Operated by the Association of Universities for Research in Astronomy Inc. under cooperative agreement with the National Science Foundation.  相似文献   

16.
17.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

18.
Résumé On étudie l'effet du champ magnétique terrestre sur le mouvement d'un satellite autour de son centre de gravité. Le satellite possède une symétrie dynamique et un moment magnétique propre dirigé suivant l'un des axes principaux d'inertie; le champ magnétique terrestre est assimilé au champ d'un dipôle dont les pôles coïncident avec les pôles terrestres. On néglige les perturbations de la trajectoire du satellite qui est supposée circulaire. La position du satellite par rapport à son centre de gravité est repérée dans un système d'axes lié au plan de l'orbite et le mouvement est décrit à l'aide des angles d'Euler , , . La symétrie sphérique et le choix du moment magnétique sur l'un des axes d'inertie permettent d'éliminer l'angle .La solution pour et peut se développer en séries de puissance d'un petit paramètre . Les séries convergent pour ||<1.Lorsque le moment magnétique est faible on la rotation du satellite rapide, est faible. Les développements sont calculés effectivement jusqu'à 2.La comparaison des résultats avec l'intégration numérique du système d'équations différentielles est satisfaisante.
The effect of the Earth's magnetic field on the motion of a satellite around its centre of mass is investigated. The satellite is assumed to be dynamically symmetric and to be magnetized in the same direction as that of a principal axis. The Earth's magnetic field is assumed to be a dipole field whose poles coincide with the rotation poles of the Earth. The satellite's orbit is circular and perturbations are neglected. The position of the satellite with respect to its centre of mass is given with respect to a coordinate system fixed in the orbital plane and the motion is described by Euler's angles , , . The spherical symmetry and the coincidence of the magnetic moment with a principal axis allow one to eliminate the angle .The solution for and , can be expanded in power series for small parameter .The series converge for <1. is small for a small magnetic moment or a high angular velocity of the rotating satellite. The terms of the expansion of the series are calculated up to 2.The comparison of the results with those obtained by numerical integration of the differential equation is satisfactory.
  相似文献   

19.
A spatially homogeneous and isotropic Robertson-Walker model withzero-curvature of the universe is studied within the frame-work of Lyra'smanifold. The gauge-function in Lyra's manifold is taken to betime-dependent. Exact solutions of Einstein equations are obtained for twodifferent early phases of the universe viz. Inflationary phase andradiation-dominated phase by using `gamma-law' equation of statep = ( - 1) . The -index, describing the material content,varies continuously with cosmic time so that in the course of itsevolution, the universe goes through a transition from an inflationaryphase to a radiation-dominated phase. The physical properties of themodels are also discussed.  相似文献   

20.
The light curved in the CM field   总被引:1,自引:0,他引:1  
In this paper we introduce the CM field in Sections 2 and 3 based on the paper by Wang and Peng (1985), and calculate the light curved in the CM field in Section 4. The result shows thatP makes CM larger than C at , and smaller at . Under a special circumstance which source, CM lens, and observer are in the same line, if we get | 0=0 , and | =/2 , we can determine theP(M) andQ(M) of the CM lens,M is the mass of the CM lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号