首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hipparcos, the first ever experiment of global astrometry, was launched by ESA (European Space Agency) in 1989 and its results published in 1997 (Perryman et al. in Astron. Astrophys. 323:L49, 1997; Perryman & ESA (eds.) in The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino in Astron. Astrophys. 439:791, 2005; van Leeuwen in Astron. Astrophys. 474:653, 2007a). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20 000 stars (22 000 for the original catalogue, 30 000 for the re-reduction) with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in 2013 (Perryman et al., in Astron. Astrophys. 369:339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC (Gaia Data Processing and Analysis Consortium), we will illustrate what Gaia can provide with some selected examples.  相似文献   

2.
We present an investigation of the differences between quasi-instantaneous stellar proper motions from the Hipparcos catalogue and long-term proper motions determined by combining Hipparcos and the Astrographic Catalogue. Our study is based on a sample of about 12000 stars of visual magnitude from 7 to 10 in two declination zones on the northern and equatorial sky. The distribution of the proper-motion differences shows an excess of large deviations. This is caused by the influence of orbital motion of unresolved binary systems. The proper-motion deviations provide statistical evidence for 360 astrometric binaries in the investigated zones, corresponding to about 2400 such binaries in the entire Hipparcos catalogue, in addition to those already known. In order to check whether the observed deviations are compatible with standard assumptions on the basic parameters of binary stars, we model the impact of orbital motion on the observed proper motions in a Monte Carlo simulation. We show that the simulation yields an acceptable approximation of the observations, if a binary frequency between 70% and 100% is assumed, i.e.if most of the stars in the sample are assumed to have a companion. Thus Hipparcos astrometric binaries confirm that the frequency of non-single stars among field stars is very high. We also investigate the influence of the mass function for the secondary component on the result of the simulation. A constant mass function and mass functions with moderate increase towards low masses lead to results, which are compatible with the observed proper-motion effects. A high preponderance of very-low-mass or substellar companions as produced, for example, by a M—1 power law is not in agreement with the frequency of proper-motion deviations in our sample of stars.  相似文献   

3.
简述了第二个天体测量卫星Gaia(将于2013年3月发射)项目的科学意义,并给出了该项目的组织工作和最近的进展.描述了Gala观测资料处理的基本原理,以及与依巴谷观测资料处理的不同点.介绍了Gaia参考架构建的考虑,以及为了构建微角秒量级的参考架,应在自行中加入系统差改正,如长期光行差、引力波效应、宇宙膨胀各向异性的影响,弱的微引力透镜和微引力透镜噪声效应等.介绍了Gaia光学参考架与射电参考架ICRFL2之间建立联系过程中,选择河外射电源的准则,其中包括源的核漂移和光学长期变化监测等.最后,提出了我国现有设备参与支持Gaia的地基观测,以及正在研制的65 m射电天线在射电天体测量方面可以开展的若干课题.  相似文献   

4.
The ESA Gaia mission will bring a new era to the domain of standard candles. Progresses in this domain will be achieved thanks to unprecedented astrometric precision, whole-sky coverage and the combination of photometric, spectrophotometric and spectroscopic measurements. The fundamental outcome of the mission will be the Gaia catalogue produced by the Gaia Data Analysis and Processing Consortium (DPAC), which will contain a variable source classification and specific properties for stars of specific variability types. We review what will be produced for Cepheids, RR Lyrae, Long Period Variable stars and eclipsing binaries.  相似文献   

5.
6.
One of the most promising space missions of the European Space Agency is the astrometric satellite Gaia , which will provide very precise astrometry and multicolour photometry, for all 1.3 billion objects to   V ∼ 20  , and radial velocities with accuracies of a few km s−1 for most stars brighter than   V ∼ 17  . Consequently, full homogeneous six-dimensional phase-space information for a huge number of stars will become available. Our Monte Carlo simulator has been used to estimate the number of white dwarfs potentially observable by Gaia . From this we assess the white dwarf luminosity functions that Gaia will obtain and discuss in depth the scientific returns of Gaia in the specific field of white dwarf populations. Scientifically attainable goals include, among others, a reliable determination of the age of the Galactic disc, a better knowledge of the halo of the Milky Way and the reconstruction of the star formation history of the Galactic disc. Our results also demonstrate the potential impact of a mission such as Gaia within the context of current understanding of white dwarf cooling theory.  相似文献   

7.
简述了后依巴谷的天体测量工作。首先给出了第二个天体测量卫星Gaia的最新进展、最近提出的JAMSE和OBSS计划的简介,以及包含天体测量内容的SIM PlanetQuest计划的情况; 叙述了多波段天体参考架的建立和维持,特别是依巴谷星表向暗星方向的扩充和数字巡天,以及其他地面观测计划,如双星和聚星、太阳系天体的观测等;介绍了天体测量与天体物理结合的几个研究课题的进展;最后对我国自然科学基金会“十一五”天体测量优先发展的方向与内容提出建议。  相似文献   

8.
The Hipparcos satellite was launched in 1989. It was the first, and remains to date the only, attempt at performing large-scale astrometric measurements from space. Hipparcos marked a fundamentally new approach to the field of astrometry, revolutionising our knowledge of the positions, distances, and space motions of the stars in the solar neighbourhood. In this retrospective, I look back at the processes which led to the mission??s acceptance, provide a short summary of the underlying measurement principles and the experiment??s scientific achievements, and a conclude with a brief summary of its principal legacy??the Gaia mission.  相似文献   

9.
The Input Catalogue of some 100000 stars that is presently prepared for observation by the astrometric satellite HIPPARCOS, will contain many double and multiple systems. Because of the Hipparcos observation technique, these systems have to be divided in a few particular categories that are described and discussed. Each of them leads to specific considerations concerning the contribution of the Hipparcos observations. The category of very close pairs to which Hipparcos will certainly add many systems newly discovered during the mission, is compared to that of the few astrometric pairs that have been discovered by groundbased techniques.Hipparcos appears finally as a very important tool in double star astronomy research and especially in the field of very close systems.Communication presented at the International Conference on Astrometric Binaries, held on 13–15 June, 1984, at the Remeis-Sternwarte Bamberg, Germany, to commemorate the 200th anniversary of the birth of Friedrich Wilhelm Bessel (1784–1846).  相似文献   

10.
A study of cluster characteristics and internal kinematical structure of the middle-aged Pleiades open star cluster is presented. The individual star apexes and various cluster kinematical parameters including the velocity ellipsoid parameters are determined using both Hipparcos and Gaia data. Modern astrometric parameters were taken from the Gaia Data Release 1 (DR1) in combination with the Radial Velocity Experiment Fifth Data Release (DR5). The necessary set of parameters including parallaxes, proper motions and radial velocities are used for \(n=17\) stars from Gaia DR1+RAVE DR5 and for \(n=19\) stars from the Hipparcos catalog using SIMBAD data base. Single stars are used to improve accuracy by eliminating orbital movements. RAVE DR5 measurements were taken only for the stars with the radial velocity errors not exceeding \(2~\mbox{km}/\mbox{s}\). For the Pleiades stars taken from Gaia, we found mean heliocentric distance as \(136.8 \pm 6.4\) pc, and the apex position is calculated as: \(A_{CP}=92^{\circ }.52\pm 1^{\circ }.72\), \(D_{CP}=-42^{\circ }.28\pm 2^{\circ }.56\) by the convergent point method and \(A_{0}=95^{\circ }.59\pm 2^{\circ }.30\) and \(D_{0}=-50^{\circ }.90\pm 2^{\circ }.04\) using AD-diagram method (\(n=17\) in both cases). The results are compared with those obtained historically before the Gaia mission era.  相似文献   

11.
Gaia is an ambitious space observatory devoted to obtain the largest and most precise astrometric catalogue of astronomical objects from our Galaxy and beyond. On-board processing and transmission of the huge amount of data generated by the instruments is one of its several technological challenges. The measurement time tags are critical for the scientific results of the mission, so they must be measured and transmitted with the highest precision – leading to an important telemetry channel occupation. In this paper we present the optimization of time data, which has resulted in a useful software tool. We also present how time data is adapted to the packet telemetry standard. The several communication layers are illustrated and a method for coding and transmitting the relevant data is described as well. Although our work is focused on Gaia, the timing scheme and the corresponding tools can be applied to any other instrument or mission with similar operational principles.  相似文献   

12.
New ephemeris and the absolute parameters—masses, radii and luminosities—of the contact systems VW LMi and BX Dra have been obtained, by means of the analysis of the minima data available in the literature (for the determination of the ephemeris) and combining the previously published spectroscopic information and the results of the Wilson-Devinney method using photometric data (for the determination of the absolute parameters). The VW LMi OC analysis confirms the multiplicity of the system detected previously from the spectroscopic data. Masses of the VW LMi contact system primary and secondary components are 1.67 ± 0.02M and 0.70 ± 0.02M , respectively. The corresponding radii are 1.709 ± 0.007R and 1.208 ± 0.006R , respectively. For the BX Dra contact system the masses are 2.19 ± 0.13M and 0.63 ± 0.06M , and the radii, 2.13 ± 0.04R and 1.26 ± 0.03R , for the primary and secondary, respectively. In both cases, the estimated luminosities seem to be slightly greater that the values derived from the Hipparcos distances.  相似文献   

13.
Gaia is the next astrometry mission of the European Space Agency (ESA), following up on the success of the Hipparcos mission. With a focal plane containing 106 CCD detectors, Gaia will survey the entire sky and repeatedly observe the brightest 1,000 million objects, down to 20th magnitude, during its 5-year lifetime. Gaia’s science data comprises absolute astrometry, broad-band photometry, and low-resolution spectro-photometry. Spectroscopic data with a resolving power of 11,500 will be obtained for the brightest 150 million sources, down to 17th magnitude. The thermo-mechanical stability of the spacecraft, combined with the selection of the L2 Lissajous point of the Sun-Earth/Moon system for operations, allows stellar parallaxes to be measured with standard errors less than 10 micro-arcsecond (μas) for stars brighter than 12th magnitude, 25 μas for stars at 15th magnitude, and 300 μas at magnitude 20. Photometric standard errors are in the milli-magnitude regime. The spectroscopic data allows the measurement of radial velocities with errors of 15 km s−1 at magnitude 17. Gaia’s primary science goal is to unravel the kinematical, dynamical, and chemical structure and evolution of the Milky Way. In addition, Gaia’s data will touch many other areas of science, e.g., stellar physics, solar-system bodies, fundamental physics, and exo-planets. The Gaia spacecraft is currently in the qualification and production phase. With a launch in 2013, the final catalogue is expected in 2021. The science community in Europe, organised in the Data Processing and Analysis Consortium (DPAC), is responsible for the processing of the data.  相似文献   

14.
After publication of the Hipparcos catalogue (in 1997), a few new astrometric catalogues have appeared (TYCHO‐2, ARIHIP, etc.), as a good combination of the Hipparcos satellite and ground‐based data, to get more accurate coordinates and proper motions of stars than the Hipparcos catalogue ones. There are also investigations on improving the Hipparcos coordinates and proper motions by using the astrometric observations of latitude and universal time variations (via observed stars referred to Hipparcos catalogue), together with Hipparcos data, carried out during the last few years. These kind of ground‐based data were collected at the end of the last century by J. Vondrák. There are about 4.4 million optical observations made worldwide at 33 observatories and with 47 instruments during 1899.7–1992.0; our Belgrade visual zenith telescope data (for the period 1949.0‐1986.0) were included. First of all, these data were used to determine the Earth Orientation Parameters – EOP, but they are also useful for the opposite task – to check the accuracy of coordinates and proper motions of Hipparcos stars which were observed from the ground over many decades. Here, we use the latitude part of ten Photographic Zenith Tubes – PZT data (more than 0.9 million observations made at 6 observatories during the time interval 1915.8–1992.0), and combine them with the Hipparcos catalogue ones, with suitable weights, in order to check the proper motions in declination for 807 common PZT/Hipparcos stars (and to construct the PZT catalogue of μδ for 807 stars). Our standard errors in proper motions in declination of these stars are less than or equal to the Hipparcos ones for 423 stars. The mean value of standard errors of 313 stars observed over more than 20 years by PZT is 0.40 mas/yr. This is 53% of 0.75 mas/yr (the suitable value from the Hipparcos catalogue). We used the Least Squares Method – LSM with the linear model. Our results are in good agreement with the Earth Orientation Catalogue – EOC‐2 and the new Hipparcos ones. The main steps of the method and the investigations of systematic errors in determined proper motions (the proper motion differences with respect to the Hipparcos values, the EOC‐2 ones and the new Hipparcos ones, as a function of α, δ, and magnitude) are presented here. A comparison of the four catalogues by pairs shows that there is no significant relationship between the differences of their μδ values and magnitudes and color indices of the common 807 stars. All catalogues have relatively small random and systematic errors which are close to each other. However, the comparison shows that our formal errors are too small. They are underestimated by a factor of nearly 1.7 (for EOC‐2, it is 2.0) if we take the new Hipparcos (or Hipparcos) data as reference (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Summary The general concept of theHipparcos astrometric mission is first recalled as well as the problems related to the observation technique of this satellite. TheInca Data Base and theHipparcos Input Catalogue are described and the place of the double and multiple stars in the mission and in theInput Catalogue is discussed. The need of a specific catalogue for these celestialobjects (CCDM) is shown and its format is given. The contribution of theHipparcos mission and of the CCDM to double star astronomy and more precisely to wide double and multiple systems is finally detailed.  相似文献   

16.
The displacement of a radio-emitting star around the barycenter of a possible planetary system can be measured by astrometric very long baseline interferometry (VLBI) observations. We have observed the radio-emitting star 2 CrB at 8 epochs over 5 years by VLBI and fitted its 5 astrometric parameters to the observed coordinates. The post-fit coordinate residuals have an rms scatter of 0.22 milliarcseconds and show no systematic behavior. We use this result to set a limit on the presence of planets around 2 CrB and conclude that our present VLBI astrometric precision corresponds to the threshold to detect a Jupiter-like planet around this star. We also discuss the astrometric monitoring program of 11 radio-emitting stars that we are conducting for the Hipparcos space mission and its possible contribution to a long-term planet search program.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

17.
The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main physical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.  相似文献   

18.
This paper reports results of the improvement of orbital elements of the 62 minor planets included in the Hipparcos mission. The astrometric observations supplied by the Minor Planet Center and the meridian circles at La Palma and Bordeaux observatories were used by the author. The accuracy reached (RMS O-C) for each minor planet and for La Palma and Bordeaux observations are presented.  相似文献   

19.
Astrometric observations of microlensing events can be used to obtain important information about lenses. During these events, the shift of the position of the multiple image centroid with respect to the source star location can be measured. This effect, which is expected to occur on scales from micro-arcseconds to milli-arcseconds, depends on the lens-source-observer system physical parameters. Here, we consider the astrometric and photometric observations by space and ground-based telescopes of microlensing events towards the Galactic bulge caused by free floating planets (FFPs). We show that the efficiency of astrometric signal on photometrically detected microlensing events tends to increase for higher FFP masses in our Galaxy. In addition, we estimate that during five years of the Gaia observations, about a dozen of microlensing events caused by FFPs are expected to be detectable.  相似文献   

20.
We present observations and light curve analysis of the eclipsing binary R CMa in the narrow band filters v and b. Observations were made during 1993 at Biruni Observatory and the light curves have been analyzed using the Wilson-Devinney light curve interpretation program. Assuming a semi-detached configuration for R CMa, the parameters i, Ω1, L 1, T 2 and A 2 were adjusted for the best fit between the synthesized light curves and observations. Both light curves were fitted well with a lower value of bolometric albedo than what would be expected for a normal cool star with a convective envelope. The masses of the primary and secondary components and the absolute dimensions of the stars have been calculated using the derived relative dimensions from Wilson-Devinney codes and the spectroscopic observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号