首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven spinel-group minerals in various geological settings have been revealed in the rocks of the Khibiny pluton. Hercynite, gahnite, and vuorelainenite occur only in xenoliths of hornfels after volcanic and sedimentary rocks, whereas spinel and magnesiochromite occur in alkaline ultramafic rocks of dike series. Franklinite has been discovered in a low-temperature hydrothermal vein. Ubiquitous magnetite is abundant in foyaite, foidolites, alkaline ultrabasic rocks, and pegmatite and hydrothermal veins and may even be the main mineral in some foidolite varieties. The spinel-group minerals are characterized by various chemical compositions due to the fractionation of nepheline syenites resulting in formation of the Main ring of foidolites and apatite-nepheline ore. Like most other minerals found throughout the pluton, magnetite is characterized by variation in the chemical composition along the radial line from the contact with country Proterozoic volcanic rocks to the geometric center of the pluton. Toward the center, the total Ti and Mn contents in magnetite increase from 5–15 up to 40 at %.  相似文献   

2.
Five minerals of the corundum group have been identified in the Khibiny pluton with certainty. Corundum proper and karelianite occur only in hornfels after volcanic and sedimentary rocks. Xenoliths of hornfels mark the ring faults that bound foidalite within the field of foyaite. Hematite occurs in hydrothermally altered nepheline syenite and crosscutting hydrothermal veins related to the ring faults. Minerals of the ilmenite-pyrophanite series are present in all rocks of the pluton, including veins. Accessory ilmenite in foyaite varies from the manganese variety and pyrophanite in the inner and outer parts of the pluton to manganese-free ilmenite in zone of the Main Ring Fault. In xenoliths of volcanic rocks and alkaline ultramafic rocks, ilmenite is enriched in magnesium. The zoning in distribution of the above-mentioned minerals and the character of variation in their compositions from margins of the pluton to its center are consistent with the petrochemical zoning formed as a result of foyaite alteration of near ring faults.  相似文献   

3.
The occurrence, morphology, and composition of rinkite are considered against the background of zoning in the Khibiny pluton. Accessory rinkite is mostly characteristic of foyaite in the outer part of pluton, occurs somewhat less frequently in foyaite and rischorrite in the central part of pluton, even more sparsely in foidolites and apatite–nepheline rocks, and sporadically in fenitized xenoliths of the Lovozero Formation. The largest, up to economic, accumulations of rinkite are related to the pegmatite and hydrothermal veins, which occur in nepheline syenite on both sides of the Main foidolite ring. The composition of rinkite varies throughout the pluton. The Ca, Na, and F contents in accessory rinkite and amorphous products of its alteration progressively increase from foyaite and fenitized basalt of the Lovozero Formation to foidolite, rischorrite, apatite–nepheline rocks, and pegmatite–hydrothermal veins.  相似文献   

4.
This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15–40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.  相似文献   

5.
The nepheline syenites and foidolites of the world’s largest Lovozero and Khibiny allkaline massifs contain numerous xenoliths of intercalating olivine basalts, their tuffs, tuffites, and quartzitosandstones that experienced more (in the Khibiny Massif) or less (in the Lovozero Massif) intense thermal-metasomatic transformation. In terms of geological, petrographical, and petrochemical features, the unaltered rocks of the Lovozero Formation can be ascribed to the rocks of the trap formation, while all wealth of the rocks formed during their contact-metasomatic alteration (sekaninaite-anorthoclase, annite-anorthoclase, fayalite-anorthoclase, rutile-freudenbergite-anorthoclase, topaz-andalusite-anorthoclase, and others) was formed due to alkaline metasomatism. The Fourier analysis of the color variation curves for the volcanogenic-sedimentary rocks revealed the identity between bedding of initial tuffs (tuffites) and banding of their fenitized analogues.  相似文献   

6.
Data on the occurrence, morphology, anatomy, composition, and formation conditions of loparite-(Ce) in the Khibiny alkaline pluton are given. Loparite-(Ce), (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6, resulted from metasomatic alteration and assimilation of metamorphic host rocks at the contact with foyaite as well as foyaite on the contact with foidolite. This alteration was the highest in pegmatite, and albitite developed there. A decrease in temperature resulted in enrichment of the perovskite and tausonite endmembers in loparite-(Ce) owing to a decrease in the loparite and lueshite endmembers. La and Ce sharply predominate among rare earth elements in the composition of loparite-(Ce).  相似文献   

7.
The rocks of the Khibiny pluton contain 25 amphibole varieties, including edenite, fluoredenite, kaersutite, pargasite, ferropargasite, hastingsite, magnesiohastingsite, katophorite, ferrikatophorite, magnesiokatophorite, magnesioferrikatophorite, magnesioferrifluorkatophorite, ferrimagnesiotaramite, ferrorichterite, potassium ferrorichterite, richterite, potassium richterite, potassium fluorrichterite, arfvedsonite, potassium arfvedsonite, magnesioarfvedsonite, magnesioriebeckite, ferriferronyboite, ferrinyboite, and ferroeckermannite. The composition of rock-forming amphiboles changes symmetrically relative to the Central Ring of the pluton; i.e., amphiboles enriched in K, Ca, Mg, and Si are typical of foyaite near and within the Central Ring. The Fe and Mn contents in amphiboles increase in the direction from marginal part of the pluton to its center. Foyaite of the marginal zone contains ferroeckermannite, richterite, arfvedsonite, and ferrorichterite; edenite is typical of foyaite and hornfels of the Minor Arc. Between the Minor Arc and the Central Ring, foyaite contains ferroeckermannite, arfvedsonite, and richterite; amphiboles in rischorrite, foidolite and hornfels of the Central Ring are (potassium) arfvedsonite, (potassium) richterite, magnesiokatophorite, magnesioarfvedsonite, ferroeckermannite, and ferriferronyboite; amphiboles in foyaite within the Central Ring, in the central part of the pluton, are arfvedsonite, magnesioarfvedsonite, ferriferronyboite, katophorite, and richterite. It is suggested that such zoning formed due to the alteration of foyaite by a foidolite melt intruded into the Main (Central) Ring Fault.  相似文献   

8.
The interaction of natural and industrial waters with the rocks and apatite ores of the Khibiny alkaline massif was studied to estimate the extent of anthropogenic influence on natural processes. The abundance of the major rock-forming elements of the nepheline syenites and foidolites in the natural waters indicates that dissolution of nepheline and feldspathoids in natural water plays a significant role under the conditions of slow weathering in the Far North. Experiments showed that fine nepheline particles are transformed into amorphous phases at a fixed water volume at 18–20°C and pH 7.5–8.1. This process became observable already within the first day and continued for months. It is possible in stagnant reservoirs of natural waters and clearly expressed in industrial settling tanks. This is supported by the high content of amorphous phases enriched in Na, K, Al, and Si in the top layer of lacustrine sediments at the zone affected by the sewage of a concentrating mill.  相似文献   

9.
The paper presents the results of a study of the large Paleozoic ore-magmatic system in the northeastern Fennoscandian Shield comprising the Khibiny and Lovozero plutons, the Kurga intrusion, volcanic rocks, and numerous alkaline dike swarms. As follows from the results of deep drilling and 3D geophysical simulation, large bodies of rocks pertaining to the ultramafic alkaline complex occur at the lower level of the ore-magmatic system. Peridotite, pyroxenite, melilitolite, melteigite, and ijolite occupy more than 50 vol % of the volcanic-plutonic complex within the upper 15 km accessible to gravity exploration. The proposed model represents the ore-magmatic system as a conjugate network of mantle magmatic sources localized at different depth levels and periodically supplying the melts belonging to the two autonomous groups: (1) ultramafic alkaline rocks with carbonatites and (2) alkali syenites-peralkaline syenites, which were formed synchronously having a common system of outlet conduits. With allowance for the available isotopic datings and new geochronological evidence, the duration of complex formation beginning from supply of the first batches of melt into calderas and up to postmagmatic events, expressed in formation of late pegmatoids, was no less than 25 Ma.  相似文献   

10.
Ulvöspinel is a typical accessory mineral of xenoliths of volcanic and volcanosedimentary rocks in alkaline syenites of the Khibiny and Lovozero plutons. Ulvöspinel forms homogeneous Cr- and V-rich grains in slightly altered olivine basalts, basaltic tuffs, and tuffites and is enriched in Mn and Si in the course of contact-metasomatic alteration of these rocks. The strongly reduced conditions of contact metamorphism controlled by ascending flows of hydrocarbon gases and hydrogen sulfide gave rise to the subsolidus decomposition of primary ulvöspinel and Ti-high magnetite with the formation of ilmenite lamellae and then, with decreasing redox potential, of the second-generation latticed ulvöspinel lamellae.  相似文献   

11.
Malignites from the Poohbah Lake complex of northwestern Ontario, Canada are melanocratic cumulates. Cumulus pyroxene and apatite are poikilitically enclosed in a groundmass of large plates of intercumulus orthoclase and nepheline. Nepheline-feldspar fingerprint-like intergrowths occur. Nephelines are commonly zeolitized and pyroxenes altered to aggregates of biotite and/or garnet by deuteric alteration. Pyroxenes are weakly zoned from Di71 Hd18Ac11 to Di63Hd22Ac15, and are similar to the least evolved pyroxenes of other alkaline rocks. Nephelines all have compositions within the Morozewicz-Buerger convergence field and feldspars have a limited compositional range from Or88 to Or95. Perthites are absent.Inconsistancies in the usage of the terms malignite and juvite are discussed and it is considered that a non-genetic petrographic classification of nepheline syenites leads to the obscuration of a group of potassic nepheline syenites, characterized by the presence of nepheline plus orthoclase which are typically associated with saturated to over-saturated alkaline rocks, contain pseudo-leucite or nepheline-orthoclase intergrowths, are emplaced in mobile belts and are not associated with rocks of the ijolite-carbonatite suite.A genetic classification of nepheline syenites is suggested and it is proposed that; (1) mafic-rich nepheline syenites be referred to as mela-nepheline syenites (sensu lato) rather than as malignites; (2) the term malignite be used for magmatic potassic nepheline syenites characterised by the presence of nepheline plus a single potassium-rich feldspar (orthoclase or microcline) and devoid of exsolution perthite under subsolvus conditions; (3) the metasomatic malignites and juvites of ijolite-carbonatite complexes be referred to as varieties of fenites.  相似文献   

12.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   

13.
《International Geology Review》2012,54(11):1005-1027
Syenites, quartz syenites, and granites sharing ultrapotassic alkaline affinities were emplaced during the late stages of Brasiliano collision (555 ±10 Ma) along the northern border of the São Francisco craton, in the Riacho do Pontal fold belt, northeastern Brazil. The mafic and accessory paragenesis includes diopside evolving to aegirine-augite and eventually to aegirine, titanite, apatite, riebeckite, biotite, winchite, zircon, and magnetite, whereas barite and ilmenite are abundant in the more evolved aegirine-bearing granites. Differentiation was controlled by flow segregation and mineral fractionation. Trace-element patterns of aegirine-augite reflect the early crystallization of apatite + titanite + aegirine + augite. A mantle-enriched source affected by Paleoproterozoic subduction-related metasomatism is suggested.  相似文献   

14.
We present new geochemical data on alkali and nepheline syenites from various complexes of different age within the Ukrainian Shield. The results reveal a correlation between the content of trace elements in the syenites, their assignment to a particular rock complex, the chemistry of primary melts, and the degree of their differentiation. The data also suggest regional geochemical heterogeneity in the ultramafic-alkaline complexes of the Ukrainian Shield. The alkali and nepheline syenites in the ultramafic-alkaline massifs from the eastern and western parts of the region exhibit similar REE contents and Eu/Eu* ratios but are markedly different in Nb, Ta, Zr, and Hf content and are of the miaskitic type. These rocks have lower REE, Nb, and Zr and higher Sr and Ba compared with early foidolites. The rocks of the gabbro-syenite complexes define a distinct Fe-enrichment fractionation trend from early syenitic intrusions to more differentiated varieties; they are also characterized by lower Sr, Ba, and Eu/Eu* and significantly lower contents of some major elements, e.g., Ti, Mg, and P. The agpaitic index and concentrations of Zr, Nb, Y, and REE increase in the same direction. A similar geochemical feature is observed in the alkali syenites genetically associated with anorthositerapakivi-granite plutons, which show incompatible-element enrichment and strong depletion in Sr and Ba. The distinctive evolutionary trends of alkali and nepheline syenites from different rock complexes of the Ukrainian Shield can be explained by different mechanisms of their formation. The main petrogenetic mechanism controlling the distribution of trace elements in the rocks of ultramafic-alkaline complexes was the separation of parent melts of melanephelinite and melilitite types into immiscible phonolite and carbonatite liquids. The gabbro-syenite complexes and alkali syenites from anorthosite-rapakivi granite plutons evolved via crystallization differentiation, which involved extensive feldspar fractionation.  相似文献   

15.
Alkaline lamprophyre dykes from Taourirt (North Morocco) containnumerous xenoliths, ranging from alkaline pyroxenites, kaersutitites,gabbros and nepheline syenites to a calcite carbonatite. Thesilicate xenoliths and the host rocks consist of Al- and Ti-richdiopside–salite, mica or kaersutitite, ± nepheline,± plagioclase and K-feldspar, and ubiquitous apatite.Both the xenoliths and the lamprophyres are enriched in incompatibleelements. The chemical composition of the lamprophyres cannotbe accounted for by fractional crystallization alone. Moreover,the clinopyroxenes exhibit complex zoning, which requires repeatedmixing of pulses of more or less fractionated melts. The carbonatiteis a sövite cumulate with Sr-rich calcite, pyrochlore,fluorapatite, and rare salite. The Sr–Nd isotopic compositionsof the Taourirt rocks indicate a depleted mantle source, thecarbonatite having the most depleted composition, and definea linear trend similar to that of the East African carbonatites.The different rocks thus represent unrelated magmas, and thetrend is interpreted as mixing between two components with HIMUand EM1 mantle end-member signatures. An EM2 mantle componentcould also be involved for a few samples; it may correspondto hydrous metasomatized mantle of the PP–PKP (phlogopiteand phlogopite K-richterite peridotite) and MARID (mica, amphibole,rutile, ilmenite and diopside) type. KEY WORDS: alkaline magmatism; carbonatite; Morocco; REE; Sr–Nd isotopes  相似文献   

16.
Earlier, a belt of alkali-granite plutons and a carbonatite province were discovered in the South Gobi Desert, Mongolia. The Lugingol pluton of pseudoleucitic syenites with carbonatites was assigned to the alkali-granite belt. However, new dating showed that it is 40 Myr younger than the Khan-Bogdo pluton and a large fault separates it from the alkali-granite belt. In the same part of the South Gobi Desert, a dike series of alkaline K-shonkinites with a rare-metal carbonatite vein was found by V.I. Kovalenko west of the Lugingol pluton, near Mt. Baruun Hasar Uula, and a dike series of alkali and nepheline syenites was found by us northeast of the Lugingol pluton. These data give grounds to distinguish an intrusive complex of K-alkaline shonkinites and leucitic syenites with Late Paleozoic REE-bearing carbonatites. Thus, three alkaline-rock complexes of different ages are distinguished in the South Gobi Desert. We present refined geological maps of these complexes. The plutons of all three complexes are deposits of trace elements (REE, Nb, Zr, Y, P). The chemical composition of the silicate rocks of the complex, rare-metal agpaitic pegmatites, and carbonatite and apatite rare-metal ores was considered in detail. Shonkinites from Mt. Baruun Hasar Uula and the Mountain Pass mine (United States) and their carbonatites, along with the Lugingol carbonatites, belong to a single association of K-alkaline rocks and carbonatites, as evidenced by their identical chemical, mineral, and geochemical rare-metal compositions. Rare-earth element patterns and spidergrams show similarities and differences between the rare-metal rocks of three complexes as well as paragenetic differences between their rare-metal minerals. A rare process is described—the amorphization of rare-metal minerals, related to their high-temperature crystallization in a medium with abnormal silica contents of the Khan-Bogdo pegmatites. The parental magmas of the alkali-carbonatite complexes were generated from the EM-2 contaminated mantle that had undergone recycling, whereas the parental magmas of the Khan-Bogdo agpaitic alkali granites were produced from depleted mantle.  相似文献   

17.
For the first time Pb isotope composition was established in Lovozero rocks and raremetal ores, which is important for identifying their sources. The world’s largest layered intrusion of agpaitic nepheline syenite-the Lovozero alkaline massif—is located near the center of the Kola Peninsula in Russia. This superlarge complex plutonic body hosts the economically important loparite and eudiallyte deposits [1]. These deposits contain immense resources of REE, Nb, Ta, Zr, and constitute a world class mineral district. The Lovozero massif belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Previous bulk rock studies have shown that the initial Sr and Nd isotope ratios of Lovozero rocks plot in the depleted mantle quadrant of Sr-Nd diagrams [2]. More recently, Hf isotope data obtained by Kogarko et al. (3) confirm that the Lovozero and Khibina massifs with ?Hf between 6 and 8 are derived predominantly from a depleted mantle source. It was shown that Sr, Nd, and Hf abundances are significantly elevated in the Kola alkaline rocks, and thus their isotopic compositions are relatively insensitive to minor contamination by the overlying crustal rocks. By contrast, Pb in the KACP rocks is a much more sensitive indicator of a crustal component. In this paper we investigate the lead isotopic signature of all resentative types of Lovozero rocks (Table 1) in order to further characterize their mantle sources. The Lovozero massif consists of four intrusive phases. Rocks of phase I (mostly nepheline syenites) comprise about 5% of the total volume, phase II (urtites, foyaite, lujavrites) forms the main portion of the massif comprising 77% in volume, and phase III (eudialyte lujavrites) contributes about 18%. Country rocks are represented by Devonian effusive rocks and Archean gneisses.  相似文献   

18.
The Mesozoic Poços de Caldas alkaline complex, the largest known in South America, is circular-shaped with a mean diameter of about 33 km, and developed during continental break-up and drift. It comprises a suite of alkaline volcanic and plutonic rocks (mainly phonolites and nepheline syenites) with average amounts of U, Th and rare-earth elements (REEs). The evolutionary history began with major early volcanism involving ankaratrites, phonolite lavas and volcanoclastics, followed by caldera subsidence and nepheline syenite intrusions forming minor ring dykes, various intrusive bodies and circular structures. Finally, the addition or concentration of strongly incompatible elements led to the formation of eudialyte nepheline syenites and phonolites.Magmatic evolution included deuteric processes indicating a volatile-rich parent magma of upper mantle origin, without appreciable crustal contamination. These processes extended over a large temperature range and resulted in the formation of pegmatitic veins and comprised mineral assemblages including rare metal silicates such as giannettite, incipient alkali exchange reactions of feldspars, various zeolites, fluorite and hematite. Geochemically, the resulting rocks are enriched in potassium when compared to global nepheline syenites and phonolites. Mobilization and concentration of U, Th and REEs did not apparently occur at this stage.At one place (Morro do Ferro) the intermediate nephelinic suite was affected by a possible carbonatite intrusion and the formation of a stockwork of magnetite veins.Very intensive hydrothermal K- and S-rich alteration, associated with contemporaneous volcanic breccias, occurred locally. These processes led to the formation of several important radioactive and REE-rich anomalies. Two of these, the Th-REE occurrence of Morro do Ferro and the U-Zr-REE-Th occurrence of the Osamu Utsumi uranium mine, comprise the study sites of the Poços de Caldas Analogue Project.Later major stages in the evolution of the Poços de Caldas complex involved the emplacement of mafic-ultramafic dyke rocks and the onset of lateritic and allitic weathering, resulting (at the uranium mine) in supergene geochemical redistribution and the formation of redox fronts sometimes related to uranium enrichments. The end of the magmatic and hydrothermal-mineralizing events is likely fixed by the Ar-Ar dating of a lamprophyre dyke at the uranium mine (76 Ma).This study was focused towards the major rock types of the regional nephelinic suite relative to those experiencing more local hydrothermal and final weathering-related alteration. In the studied intrusive, subvolcanic and volcanic nepheline syenites and phonolites, very little variation was observed. This lack of differentiation may be seen as an argument for a short emplacement history of these rock bodies. Present radiometric age measurements suggest a time span of about 10 Ma for igneous activity at the caldera.  相似文献   

19.
Essentially isochemical thermal metamorphism of soda-rich Stockton, Lockatong and Brunswick formations of the Newark Group by diabase sills produced unusually varied and unique mineral assemblages, most of which are predominantly Na. feldspar and biotite. Within a meter of a sill Stockton arkose was altered to quartzo-feldspathic hornfels with common diopside and sphene. Within 50 m of a sill Lockatong calcitic and dolomitic mudstone formed calc-silicate hornfels with differing combinations of diopside-hedenbergite, andradite and grossular, prehnite, datolite, idocrase and wollastonite. Within a meter of a sill metamorphosed Lockatong calcareous feldspathic argillite contains sanidine-anorthoclase, aegirine, aegirine-augite, riebeckite and scapolite. Lockatong analcime-dolomite argillite was altered to unique feldspathoidal assemblages containing cancrinite, natrolite-thomsonite and rarely sodalite within 134 m, and nepheline within 30 m of the Byram Sill. Reddish-brown Brunswick mudstone produced spotted pelitic hornfels within a few 10's of meters of a sill.Response to thermal metamorphism varied directly with diminishing grain size. In both sandstone and mudstone Na. feldspar increases and K. feldspar decreases toward intrusions; quartz is rare or absent in highest-grade hornfels. Development of biotite was retarded by detrital clay minerals and hematite pigment, as well as by low temperature. Minor differences in composition among carbonate-rich and analcime-rich Lockatong deposits led to a diversity of closely associated assemblages. Aqueous solutions and relatively low temperature, probably in part during retrogressive metamorphism, produced hydrous minerals. Datolite, tourmaline, scapolite and fluorite suggest minor additions of volatiles, but the widespread feldspathoids were made from soda-rich sedimentary rocks without significant additions from an igneous source.  相似文献   

20.
High-alumina fenites in the Mont Saint-Hilaire alkaline complex, Québec, Canada, form bodies at the contact of peralkaline nepheline syenite. Fenites are subdivided into four types: corundum-spessartine-biotite-feldspar, muscovite-corundum-hercynite-biotite-feldspar, carbonated muscovite-biotite-hercynite-feldspar, and spessartine-hercynite-feldspar. Accessory minerals of the ilmenite-pyrophanite series, columbites, zircon, thorite, pyrrhotite, Fe, Mn, Mg, Ca, Ba, and REE carbonates, uedaite-(Ce), etc. are identified. Three stages are suggested in the formation of these rocks. In mineralogy and geochemistry, the Mont Saint-Hilaire high-alumina fenites are similar to Al-rich fenites replacing xenoliths in the Khibiny alkaline complex, Russia. In both cases, fenites are related to peralkaline rocks and replace high-alumina protoliths: granite at Mont Saint-Hilaire and metapelites in the Khibiny Mountains. These fenites are regarded as a specific type of fenites with rock-forming Mg-depleted hercynite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号