首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

2.
The serpentinites and associated chromitite bodies in Tehuitzingo (Acatlán Complex, southern Mexico) are in close relationship with eclogitic rocks enclosed within a metasedimentary sequence, suggesting that the serpentinites, chromitites and eclogitic rocks underwent a common metamorphic history.Primary chromites from the chromitite bodies at Tehuitzingo are of refractory-grade (Al-rich) and have a chemical composition similar to that expected to be found in an ophiolitic environment. The chromite grains in chromitites and serpentinites are systematically altered to ‘ferritchromite’. The alteration trend is usually characterized by a decrease in the Al, Mg and Cr contents coupled by an increase in Fe3+ and Fe2+.The Tehutizingo chromitites have low Platinum Group Elements (PGE) contents, ranging from 102 to 303 ppb. The chondrite-normalized PGE patterns are characterized by an enrichment in the Ir-subgroup elements (IPGE=Os, Ir, Ru) relative to the Pd-subgroup elements (PPGE=Rh, Pt, Pd). In addition, all chromitite samples display a negative slope from Ru to Pd [(Os+Ir+Ru)/(Pt+Pd)=4.78−14.13]. These patterns, coupled with absolute PGE abundances, are typical of ophiolitic chromitites elsewhere. Moreover, all the analyzed samples exhibit chondrite-normalized PGE patterns similar to those found for non-metamorphosed ophiolitic chromitites. Thus, the PGE distribution patterns found in the Tehuitzingo chromitites have not been significantly affected by any subsequent Paleozoic high-pressure (eclogite facies) metamorphic event.The chondrite-normalized PGE patterns of the enclosing serpentinites also indicate that the PGE distribution in the residual mantle peridotites exposed in Tehuitzingo was unaffected by high-pressure metamorphism, or subsequent hydrothermal alteration since the serpentinites show a similar pattern to that of partially serpentinized peridotites present in mantle sequences of non-metamorphosed ophiolites.Our main conclusion is that the chromitites and serpentinites from Tehuizingo experienced no significant redistribution (or concentration) of PGE during the serpentinization process or the high-pressure metamorphic path, or during subsequent alteration processes. If any PGE mobilization occurred, it was restricted to individual chromitite bodies without changing the bulk-rock PGE composition.Our data suggest that the Tehuitzingo serpentinites and associated chromitites are a fragment of oceanic lithosphere formed in an arc/back-arc environment, and represent an ophiolitic mantle sequence from a supra-subduction zone, the chemical composition of which remained essentially unchanged during the alteration and metamorphic events that affected the Acatlán Complex.  相似文献   

3.
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.  相似文献   

4.
Thirty-three whole-rock drill core samples and thirteen olivine, chromite, and sulfide separates from three differentiated komatiite lava flows at Alexo and Pyke Hill, Canada, were analyzed for PGEs using the Carius tube digestion ID-ICP-MS technique. The emplaced lavas are Al-undepleted komatiites with ∼27% MgO derived by ∼50% partial melting of LILE-depleted Archean mantle. Major and minor element variations during and after emplacement were controlled by 30 to 50% fractionation of olivine Fo93-94. The emplaced lavas are characterized by (Pd/Ir)N = 4.0 to 4.6, (Os/Ir)N = 1.07, and Os abundances of ∼2.3 ppb. Variations in PGE abundances within individual flows indicate that Os and Ir were compatible (bulk DOs,Ir = 2.4-7.1) and that Pt and Pd were incompatible (bulk DPt,Pd < 0.2) during lava differentiation, whereas bulk DRu was close to unity. Analyses of cumulus olivine separates indicate that PGEs were incompatible in olivine (DPGEsOl-Liq = 0.04-0.7). The bulk fractionation trends cannot be accounted for by fractionation of olivine alone, and require an unidentified Os-Ir-rich phase. The composition of the mantle source (Os = 3.9 ppb, Ir = 3.6 ppb, Ru = 5.4 ppb, Pt and Pd = 5.7 ppb) was constrained empirically for Ru, Pt, and Pd; the Os/Ir ratio was taken to be identical to that in the emplaced melt, and the Ru/Ir ratio was taken to be chondritic, so that the absolute IPGE abundances of the source were determined by Ru. This is the first estimate of the PGE composition of a mantle source derived from analyses of erupted lavas. The suprachondritic Pd/Ir and Os/Ir of the inferred Abitibi komatiite mantle source are similar to those in off-craton spinel lherzolites, orogenic massif lherzolites, and enstatite chondrites, and are considered to be an intrinsic mantle feature. Bulk partition coefficients for use in komatiite melting models derived from the source and emplaced melt compositions are: DOs,Ir = 2.3, DRu = 1.0, DPt,Pd = 0.07. Ruthenium abundances are good indicators of absolute IPGE abundances in the mantle sources of komatiite melts with 26 to 29% MgO, as Ru fractionates very little during both high degrees of partial melting and lava differentiation.  相似文献   

5.
The Palaeoproterozoic Ni–Cu sulphide deposits of the PechengaComplex, Kola Peninsula, occur in the lower parts of ferropicriticintrusions emplaced into the phyllitic and tuffaceous sedimentaryunit of the Pilgujärvi Zone. The intrusive rocks are comagmaticwith extrusive ferropicrites of the overlying volcanic formation.Massive lavas and chilled margins from layered flows and intrusionscontain <3–7 ng/g Pd and Pt and <0·02–2·0ng/g Ir, Os and Ru with low Pd/Ir ratios of 5–11. Theabundances of platinum group elements (PGE) correlate with eachother and with chalcophile elements such as Cu and Ni, and indicatea compatible behaviour during crystallization of the parentalmagma. Compared with the PGE-depleted central zones of differentiatedflows (spinifex and clinopyroxene cumulate zones) the olivinecumulate zones at the base contain elevated PGE abundances upto 10 ng/g Pd and Pt. A similar pattern is displayed in intrusivebodies, such as the Kammikivi sill and the Pilgujärvi intrusion.The olivine cumulates at the base of these bodies contain massiveand disseminated Ni–Cu-sulphides with up to 2 µg/gPd and Pt, but the PGE concentrations in the overlying clinopyroxenitesand gabbroic rocks are in many cases below the detection limits.The metal distribution observed in samples closely representingliquid compositions suggests that the parental magma becamesulphide saturated during the emplacement and depleted in chalcophileand siderophile metals as a result of fractional segregationof sulphide liquids. Relative sulphide liquid–silicatemelt partition coefficients decrease in the order of Ir >Rh > Os > Ru > Pt = Pd > Cu. R-factors (silicate-sulphidemass ratio) are high and of the order of 104–105, andthey indicate the segregation of only small amounts of sulphideliquid in the parental ferropicritic magma. In differentiatedflows and intrusions the sulphide liquids segregated and accumulatedat the base of these bodies, but because of a low silicate–sulphidemass ratio the sulphide liquids had a low PGE tenor and Pt/Irand Cu/Ir ratios similar to the parental silicate melts. Duringcooling the sulphide liquid crystallized 40–50% of monosulphidesolid solution (mss) and the residual sulphide liquid becameenriched in Cu, Pt and Pd and depleted in Ir, Os and Ru. TheCu-rich sulphide liquid locally assimilated components of thesurrounding S-rich sediments as suggested by the radiogenicOs isotopic composition of some sulphide ores (  相似文献   

6.
The Zedong ophiolites in the eastern Yarlung–Zangbo suture zone of Tibet represent a mantle slice of more than 45 km~2. This massif consists mainly of mantle peridotites, with lesser gabbros, diabases and volcanic rocks. The mantle peridotites are mostly harzburgite, lherzolite; a few dike-like bodies of dunite are also present. Mineral structures show that the peridotites experienced plastic deformation and partial melting. Olivine(Fo89.7–91.2), orthopyroxene(En_(88–92)), clinopyroxene(En_(45–49) Wo_(47–51) Fs_(2–4)) and spinel [Mg~#=100×Mg/(Mg+Fe)]=49.1–70.7; Cr~#=(100×Cr/(Cr+Al)=18.8–76.5] are the major minerals. The degree of partial melting of mantle peridotites is 10%–40%, indicating that the Zedong mantle peridotites may experience a multi–stage process. The peridotites are characterized by depleted major element compositions and low REE content(0.08–0.62 ppm). Their "spoon–shaped" primitive–mantle normalized REE patterns with(La/Sm)_N being 0.50–6.00 indicate that the Zedong ultramafic rocks belong to depleted residual mantle rocks. The PGE content of Zedong peridotites(18.19–50.74 ppb) is similar with primary mantle with Pd/Ir being 0.54–0.60 and Pt/Pd being 1.09–1.66. The Zedong peridotites have variable, unradiogenic Os isotopic compositions with ~(187)Os/~(188)Os=0.1228 to 0.1282. A corollary to this interpretation is that the convecting upper mantle is heterogeneous in Os isotopes. All data of the Zedong peridotites suggest that they formed originally at a mid-ocean ridge(MOR) and were later modified in supra–subduction zone(SSZ) environment.  相似文献   

7.
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism.  相似文献   

8.
The geochemical characteristics and behaviors of highly siderophile elements (HSEs) in forearc peridotites remain poorly constrained due to the scarcity of data. Here, we report HSE abundances of mantle peridotites from the New Caledonia ophiolites, a classical ophiolite generated in a forearc setting. Those peridotites show non‐chondritic, strongly fractionated HSE patterns and can be classified into two distinct types (namely Group I and Group II). Group I peridotites have higher HSE contents than Group II peridotites, which might be because intergranular sulfides were completely removed but sulfide inclusions were retained during partial melting of peridotites in a forearc environment, and meanwhile the distribution of sulfide inclusions are not uniform in mantle. Moreover, Group I peridotites display flat patterns from Os to Pt but strongly depleted in Pd, which resemble those patterns of some mantle wedge xenoliths. The Pt–Pd decoupling can be attributed to high degrees of partial melting. However, Group II peridotites are characterized by strongly positive Ru anomaly with highly super‐chondritic Ru/Os and Ru/Ir ratios. Such characteristics are the first reported cases for forearc peridotites. The fractionation of Ru from other HSEs might reflect the stability of refractory Ru‐rich phases in mantle wedge peridotites during different processes, e.g., partial melting and melt/fluid‐rock reactions.  相似文献   

9.
Summary ?The PGE contents of chromite separated from peridotite layers of Archaean mafic–ultramafic flows, Abitibi belt (Canada), indicate enrichment in Os–Ir–Ru (600 ppb) relative to Pd–Au (<5 ppb). Evidently, chromite was a sink for Ir–Os–Ru during melt-chromite fractionation in each of the flows. However, an additional phase, probably olivine, is required to explain the bulk Ir content of the sulphide-poor peridotites. In contrast, the chromite Pt contents range from <10 ppb to 400 ppb, with large variation in Pt/Ru (0.02–2.76) and Pt/Pd (5–400) ratios. The Pt enrichment may be related to the presence of Pt spinel structure compounds in oxidised melt, reflecting Fe–Ti spinel-related mineralisation in higher pyroxenite-gabbro layers. Received December 5, 2002; revised version accepted January 7, 2003  相似文献   

10.
The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block.In the present study,the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts,with minor picrites in the lower part and andesites,trachytes,and rhyolites in the upper part.The picrites have relatively higher platinum-group element(PGE) contents(ΣPGE=16.3-28.2 ppb),with high Cu/Zr and Pd/Zr ratios,and low S contents(5.03-16.9 ppm),indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province(ELIP) mantle source.The slightly high Cu/Pd ratios(11 000-24 000) relative to that of the primitive mantle suggest that 0.007%sulfides have been retained in the mantle source.The PGE contents of the high-Ti basalts exhibit a wider range(ΣPGE=0.517-30.8 ppb).The samples in the middle and upper parts are depleted in PGE and haveεNd(260 Ma) ratios ranging from -2.8 to -2.2,suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides,and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts.The samples in this area show Pt-Pd type primitive mantle-normalized PGE patterns,and the Pd/Ir ratios are higher than that of the primitive mantle(Pd/Ir=1),indicating that the obvious differentiation between Ir-group platinum-group elements(IPGE) and Pd-group platinum-group elements(PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution.The Pd/Pt ratios of most samples are higher than the average ratio of mantle(Pd/Pt=0.55),showing that the differentiation happened between Pt and Pd.The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle;whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys,coprecipitating with Ir-Ru-Os alloys.Some high-Ti basalt samples exhibit negative Ru anomalies,possibly due to removal of laurite collected by the early crystallized chromites.  相似文献   

11.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

12.
Contents of platinum group elements (PGE—Os, Ir, Ru, Rh, Pt, and Pd) and rhenium in basalts of different geochemical types from the ophiolite complex of the Kamchatsky Mys Peninsula have been determined by the isotope dilution-mass spectrometry method. The total contents of PGE in different basalts are commensurate (1.4-3.6 ppb), but the element ratios vary considerably. A specific feature of the rocks is the low degree of PGE fractionation (Pd/Ir = 0.9-6.6, Pt/Pd = 1.0-7.3), which makes them similar to the Hawaiian tholeiitic basalts and picrites. The most fractionated PGE pattern is observed for alkali basalt (Pd/Ir = 6.6), and the least fractionated one, for E-MORB (Pd/Ir = 1.7). The similarity of the PGE patterns of basalts of different geochemical types suggests their similar mantle sources. We propose a model explaining the geochemical features of the basalts of the Kamchatsky Mys ophiolite complex by an impurity of the Earth’s core material in the plume source. The Ir/Pd-Ru/Pd and Pd/10-Ir-Ru discrimination diagrams can be used to identify enriched (plume) basalts based on their PGE content.  相似文献   

13.
In order to constrain the highly siderophile elements (HSE: Re and platinum group elements (PGE: Os, Ir, Ru, Pt and Pd)) host mineral(s) in refractory, base metal sulfide-free mantle residues, four very depleted spinel-harzburgites from the Lherz massif (France) have been analyzed for HSE in whole-rock and in major mineral separates (olivine, orthopyroxene, clinopyroxene and spinel) by isotope dilution. In addition, HSE host minerals have been separated and analyzed with a scanning electron microscope. Olivine and spinel show the highest HSE concentration especially for Os, Ir, Ru and Pt (up to 10 ppb) among the modally-major minerals, while the pyroxenes are 1-2 orders of magnitude poorer in HSE. The major minerals account for less than 30% of the whole-rock platinum group element budget. On the other hand, rare, micron to submicron platinum group minerals (PGM), such as Ru-Os ± Ir sulfides and Pt-Ir ± Os alloys, likely located in the intergranular spaces of the refractory depleted harzburgite, account for 50-100% of the HSE budget. The PGM grains are interpreted to be residual, having formed in response to the complete consumption of the base-metal sulfides by the high degree of partial melting (i.e. 23-24%) experienced by these samples. As they sequester the compatible platinum group elements (Os, Ir, Ru and Pt) in the mantle residue, these PGM provide key constraints for the modelling of PGE contents in terrestrial basalts (e.g. the solid/liquid partition coefficients needed to account for the compatible behavior of these elements in the mantle residue) and for understanding the long-lived Os isotope heterogeneities of the upper mantle, especially the old Re-Os ages found in young oceanic mantle. In fact, because of their Os-rich compositions and high melting temperatures, these microphases are likely to preserve their initial Os isotopic compositions unmodified over multiple events of mantle melting and mixing, and therefore generate, through recycling, heterogeneous Os isotopic signatures at different scales in the convecting mantle.  相似文献   

14.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

15.
Platinum group elements (PGE: Os, Ir, Ru, Rh, Pt, Pd) are important geochemical and cosmochemical tracers. Depending on physical and chemical behaviour the PGEs are divided into two subgroups: IPGE (Ir, Os, Ru) and PPGE (Pd, Pt, Rh). Platinum group elements show strong siderophile and chalcophile affinity. Base metal sulfides control the PGE budget of the Earth’s mantle. Mantle xenoliths contain two types of sulfide populations: (1) enclosed within silicate minerals, and (2) interstitial to the silicate minerals. In terms of PGE characters the included variety shows IPGE enriched patterns — similar to the melt-depleted mantle harzburgite, whereas the interstitial variety shows PPGE enriched patterns — resembling the fractionated PGE patterns of the basalt. These PGE characters of the mantle sulfides have been interpreted to be representative of multi-stages melting process of the mantle that helped to shape the chemical evolution of the Earth.  相似文献   

16.
Platinum group elements (PGE) enrichment occurs in Zn–Cu and Ni-rich ophiolities in a number of geological settings. Platinum group elements (PGE) mineralization in Pyroxenite from the Faryab ophiolities of Zagros belt in south Iran was studied. The ophiolite rocks represent blocks of Tethyan oceanic crust that were emplaced on the continental margin during the late Cretaceous period. Much of lower ophiolitic section is composed of homogeneous harzburgite, while upper sections harzburgite interlayer with dunite and pyroxenite are included. This study focused on pyroxenite that includes most of sulfide mineralization in Faryab. More than 500 samples were investigated from polished thin sections; that cover all area of Faryab. The sulfide phases include pyrrhotite, pentlandite, millerite, violarite, smythite, and heazlewoodite. The results show that in almost all the samples Os is below the 2 ppb detection limit, Platinum values vary from <5 to 91 ppb and the light PGE (Ru, Rh, and Pd) relative to the heavy PGE (Os, Ir, and Pt) are more concentrated. Calculation showed that in pyroxenites Pd–Pt is occurring with orthopyroxenite and Rh–Os is occurring in clinopyroxenite. Ni/Pd ratios in Faryab vary between 7 and 356 and Pd/Ir ratio is 0.1–27. This indicates that in Faryab area partial melt of mantle occurred. Pd/Rh ratio in Faryab is 0.1–11, and Pd/Pt varies between 0.2 and 1.5. Pd/Ir ratio in Faryab decreases and shows that PGE in Faryab occurred.  相似文献   

17.
Ultramafic rocks around the city of Muğla in SW Turkey are represented by mantle peridotites depleted to various degrees, ranging from cpx-rich harzburgites to depleted harzburgite and dunite. Cpx-rich harzburgites are thought to be the residua left after extraction of MORB-type basalt, from which high-Al chromitite [49.2 < Cr# = 100 × Cr/(Cr + Al) < 53.5] crystallised with a higher proportion of 187Os/188Os (average of 0.1361). However, depleted harzburgites are assumed to be the residua left after extraction of hydrous boninitic melt produced by second stage partial melting of already depleted mantle due to a subducting slab, from which high-Cr chromitites (64.2 < Cr# < 85.9) with lower and heterogeneous 187Os/188Os ratio (average of 0.1324) were crystallised as a result of melt–rock interaction in a supra-subduction environment. Dunites around the chromite deposits are considered to be the product of melt–peridotite interaction. Most of the chromitites contain high-Cr chromite and display enrichment in IPGE (Os, Ir, Ru) over PPGE (Rh, Pt, Pd), with PGE concentrations between 61 and 1,305 ppb. Consistently, laurite-erlichmanite series minerals with various Os concentrations are found to be the most abundant PGM inclusions in chromite. Os–Ir–Ru alloy, irarsite, and kashinite, as well as Pt–Fe alloy and Pt-oxide, which are not common in ophiolitic chromitites, were also detected as magmatic PGM inclusions. Pentlandite, millerite, and, rarely heazlewoodite form the magmatic inclusions of base-metal sulphide. The presence of olivine and clinopyroxene, as well as hydrous silicate inclusions such as amphibole and phlogopite, in high-Cr chromitite supports the idea that high-Cr chromitites were formed in a supra-subduction environment.  相似文献   

18.
Data are presented on chromitites from the northern and southern sheets of the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur (Kharanur) massifs). The new and published data are used to consider similarities and differences between ore chrome-spinel from the chromitites of the northern and southern ophiolite sheets as well as the species diversity of PGE minerals and the evolution of PGE mineralization. Previously unknown PGE minerals have been found in the studied chromitites.Ore chrome-spinel in the chromitites from the northern sheet occurs in medium- and low-alumina forms, whereas the chromitites from the southern sheet contain only medium-alumina chrome-spinel. The PGE minerals in the chromitites from the southern sheet are Os–Ir–Ru solid solutions as well as sulfides and sulfoarsenides of these metals. The chromitites from the northern sheet contain the same PGE minerals and diverse Rh–Pt–Pd mineralization: Pt–Ir–Ru–Os and isoferroplatinum with Ir and Os–Ir–Ru lamellae. Areas of altered chromitites contain a wide variety of low-temperature secondary PGE minerals: Pt–Cu, Pt–Pd–Cu, PdHg, Rh2SnCu, RhNiAs, PtAs2, and PtSb2. The speciation of the PGE minerals is described along with multiphase intergrowths. The relations of Os–Ir–Ru solid solutions with laurite and irarsite are considered along with the microstructure of irarsite–osarsite–ruarsite solid solutions. Zoned Os–Ir–Ru crystals have been found. Zone Os82–99 in these crystals contains Ni3S2 inclusions, which mark off crystal growth zones. Different sources of PGE mineralization are presumed for the chromitites from the northern and southern sheets.The stages of PGE mineralization have been defined for the chromitites from the Il’chir ophiolite belt. The Pt–Ir–Ru–Os and (Os, Ru)S2 inclusions in Os–Ir–Ru solid solutions might be relics of primitive-mantle PGE minerals. During the partial melting of the upper mantle, Os–Ir–Ru and Pt–Fe solid solutions formed syngenetically with the chromitites. During the late-magmatic stage, Os–Ir–Ru solid solutions were replaced by sulfides and sulfarsenides of these metals. Mantle metasomatism under the effect of reduced mantle fluids was accompanied by PGE remobilization and redeposition with the formation of the following assemblage: garutiite (Ni,Fe,Ir), zaccariniite (RhNiAs), (Ir,Ni,Cu)S3, Pt–Cu, Pt–Cu–Fe–Ni, Cu–Pt–Pd, and Rh–Cu–Sn–Sb. The zoned Os–Ir–Ru crystals in the chromitites from the northern sheet suggest dissolution and redeposition of Os–Ir–Ru primary-mantle solid solutions by bisulfide complexes. Most likely, the PGE remobilization took place during early serpentinization at 450–600 ºC and 13–16 kbar.During the crustal metamorphic stage, tectonic movements (obduction) and a change from reducing to oxidizing conditions were accompanied by the successive transformation of chrome-spinel into ferrichromite–chrome-magnetite with the active participation of a metamorphic fluid enriched in crustal components. The orcelite–maucherite–ferrichromite–sperrylite assemblage formed in epidote-amphibolitic facies settings during this stage.The PGE mineral assemblage reflects different stages in the formation of the chromitites and dunite-harzburgite host rocks and their transformation from primitive mantle to crustal metamorphic processes.  相似文献   

19.
Dunite and serpentinized harzburgite in the Cheshmeh-Bid area, northwest of the Neyriz ophiolite in Iran, host podiform chromitite that occur as schlieren-type, tabular and aligned massive lenses of various sizes. The most important chromitite ore textures in the Cheshmeh-Bid deposit are massive, nodular and disseminated. Massive chromitite, dunite, and harzburgite host rocks were analyzed for trace and platinum-group elements geochemistry. Chromian spinel in chromitite is characterized by high Cr~#(0.72-0.78), high Mg~#(0.62–0.68) and low TiO_2(0.12 wt%-0.2 wt%) content. These data are similar to those of chromitites deposited from high degrees of mantle partial melting. The Cr~# of chromian spinel ranges from 0.73 to 0.8 in dunite, similar to the high-Cr chromitite, whereas it ranges from 0.56 to 0.65 in harzburgite. The calculated melt composition of the high-Cr chromitites of the Cheshmeh-Bid is 11.53 wt%–12.94 wt% Al_2O_3, 0.21 wt%–0.33 wt% TiO_2 with FeO/MgO ratios of 0.69-0.97, which are interpreted as more refractory melts akin to boninitic compositions. The total PGE content of the Cheshmeh-Bid chromitite, dunite and harzburgite are very low(average of 220.4, 34.5 and 47.3 ppb, respectively). The Pd/Ir ratio, which is an indicator of PGE fractionation, is very low(0.05–0.18) in the Cheshmeh-Bid chromitites and show that these rocks derived from a depleted mantle. The chromitites are characterized by high-Cr~#, low Pd + Pt(4–14 ppb) and high IPGE/PPGE ratios(8.2–22.25), resulting in a general negatively patterns, suggesting a high-degree of partial melting is responsible for the formation of the Cheshmeh-Bid chromitites. Therefore parent magma probably experiences a very low fractionation and was derived by an increasing partial melting. These geochemical characteristics show that the Cheshmeh-Bid chromitites have been probably derived from a boninitic melts in a supra-subduction setting that reacted with depleted peridotites. The high-Cr chromitite has relatively uniform mantle-normalized PGE patterns, with a steep slope, positive Ru and negative Pt, Pd anomalies, and enrichment of PGE relative to the chondrite. The dunite(total PGE = 47.25 ppb) and harzburgite(total PGE =3 4.5 ppb) are highly depleted in PGE and show slightly positive slopes PGE spidergrams, accompanied by a small positive Ru, Pt and Pd anomalies and their Pdn/Irn ratio ranges between 1.55–1.7 and 1.36-1.94, respectively. Trace element contents of the Cheshmeh-Bid chromitites, such as Ga, V, Zn, Co, Ni, and Mn, are low and vary between 13–26, 466–842, 22-84, 115–179, 826–-1210, and 697–1136 ppm, respectively. These contents are compatible with other boninitic chromitites worldwide. The chromian spinel and bulk PGE geochemistry for the Cheshmeh-Bid chromitites suggest that high-Cr chromitites were generated from Cr-rich and, Ti-and Al-poor boninitic melts, most probably in a fore-arc tectonic setting related with a supra-subduction zone, similarly to other ophiolites in the outer Zagros ophiolitic belt.  相似文献   

20.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号