首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adsorption isotherms of 2,4-dinitrophenol and 2,4-diehlorophenol on hexadeeyhrimethylammonium (HDTMA) bromide modified red soil under different ionic strength, divalent cation Cu2 or different pH conditions were studied. All the adsorption isotherms were well fitted to the Freundlich equation. The adsorption capacities of 2,4-dinitrophenol or 2,4-dichlorophenol were dramatically enhanced by HDTMA treatment of red soil. The increase of ionic strength and the addition of divalent heavy metal cation Cu^2 significantly enhanced the adsorption of 2,4-dinitrophenol or 2,4-dichlorophenol on the HDTMA-modified red soil. Adsorption capacities of HDTMA-modified red soil for 2,4-dinitrophenol and 2,4-dichlorophenol gradually increased with decreasing pH in the aqueous phase.  相似文献   

2.
Partial pyrolysis alters the chemical and textural properties of the lignocellulosic material. This work reports the effect of partial pyrolysis of olive wood on adsorption isotherms, kinetics and thermodynamics of chloro and nitrophenols. Shape of adsorption isotherms of the partially pyrolyzed sorbents was L3 for phenol; L2 for 2-nitrophenol and 2,4-dinitrophenol; H3 for 2-chlorophenol, 3-chlorophenol and 4-nitrophenol; and H2 for 4-chlorophenol. The pyrolyzed olive wood sorbents obeyed Langmuir and Freundlich models. Pyrolysis raised adsorption capacity, favorability and spontaneity; the adsorption became more exothermic; the randomness decreased. The adsorption was mainly physical; it occurred first by film diffusion then by pore-filling. Adsorption followed second-order rate kinetics. Adsorption of phenols on olive wood seemed to be governed by hydrophobic interaction. Washing the pyrolyzed olive wood with ethanol caused a decrease in adsorption capacity, favorability and spontaneity, and the adsorption became less exothermic. This indicated that pyrolysis produced species on the olive wood surface that played a significant role in phenols adsorption.  相似文献   

3.
为了对地下水系统中天然胶体与Ni2+的共迁移特征进行研究,通过静态吸附实验和石英砂模拟含水层介质柱实验研究了土壤胶体对Ni2+在地下水中运移的影响,以及pH、离子强度(IS)、有机质等对土壤胶体吸附Ni2+的影响。结果表明:随着pH值升高,土壤胶体对Ni2+的吸附量增加;离子强度的增加会显著地降低土壤胶体吸附Ni2+的能力;腐殖酸(HA)的存在会增强胶体对Ni2+的吸附能力;在有胶体的情况下,Ni2+穿透砂柱的时间会缩短,吸附能力增强,吸附量增加,但当离子强度增加时,虽然Ni2+穿透砂柱的时间也被缩短,但是吸附量却降低。  相似文献   

4.
低聚合羟基铁-蒙脱石复合体吸附铬酸根的实验研究   总被引:3,自引:2,他引:3  
摘要:在模拟的酸性土壤条件下,利用制备的低聚合羟基铁蒙脱石复合体对铬酸根进行吸附实验。重点研究了吸附条件对复合体铬吸附能力的影响,对比了蒙脱石和含水氧化铁。结果表明,实验条件下复合体有较强的铬吸附能力,其铬吸附量低于铁沉积物而明显高于蒙脱石。铬初始质量浓度是影响复合体铬吸附量的最主要因素,离子强度次之。吸附时间(12h以上)、温度、pH值对复合体铬吸附量的影响很小;说明在酸性土壤条件下,复合体有强且稳定的铬吸附能力。  相似文献   

5.
Various soil zones such as Bw, C1, and C3 are developed on spilite. Montmorillonite, vermiculite and chlorite is moderately occurred in the C1 and C3 soil zones, in contrast montmorillonite and vermiculite are absent in Bw soils whereas illite and sesquioxide are relatively increased. The high cation exchange capacity (CEC) of montmorillonite and vermiculte and moderate CEC of chlorite and illite resulted in the high adsorption of heavy metals. The adsorption of the heavy metals on spilite soil zones was studied at different concentrations and pH levels. Heavy metals like lead, cadmium, and copper were selected for adsorption studies considering their contribution as toxic metals in the environment. The initial solute concentrations ranged from 7.0 × 10−3 to 1.0 × 102 mg/L. The sorption behavior of Cd2+, Pb2+, and Cu2+ on soil zones of spilite was investigated using the batch equilibrium technique at 25°C. The characteristics of the adsorption process were investigated using Scatchard plot analysis (q/C vs. q) by the batch equilibrium technique at 25°C. In the adsorption of heavy metals, deviation from linearity in the plot of q/C versus q was observed, indicating the presence of multi-model interaction and non-Langmuirean behavior. When the Scatchard plot showed a deviation from linearity, greater emphasis was placed on the analysis of the adsorption data in terms of the Freundlich model, in order to construct the adsorption isotherms of the metal(s) at particular concentration(s) in solutions. The adsorption behavior of these metal ions on spilite soil zones is expressed by the Freundlich isotherms. Adsorption constants and correlation coefficients for the Cd, Pb, and Cu on spilite soil zones were calculated from Freundlich plots.  相似文献   

6.
Tarap peel (TP) and oxalic-acid-modified Tarap peel (TP-OX) were used to remove brilliant green (BG) dye from aqueous solution. Surface modification of TP suggested that functional groups such as carboxyl, hydroxyl and amino were involved in the adsorption of BG onto TP. Parameters such as effects of pH, contact time, ionic strength, initial dye concentration and temperature were included to study the adsorption of BG onto TP and TP-OX. Adsorption isotherm models were used to investigate the adsorption process, while kinetics models were used to provide insight into the adsorption mechanisms. Optimised contact time of 2 h with no pH adjustment was used. Adsorption of BG onto TP was best fitted to the Freundlich model, while experimental data for TP-OX are best described by the Tempkin model. The maximum adsorption capacities were determined as 174 and 275 mg g?1 for TP and TP-OX, respectively. Thermodynamics study indicated the endothermic nature of adsorptions of BG onto both adsorbents. According to kinetics study, the adsorption mechanisms on both adsorbents followed pseudo-second-order model, and film diffusion might have major role in the adsorption process.  相似文献   

7.
《Applied Geochemistry》1997,12(3):243-254
Column flow-through experiments reacting wastewater solutions with sandy loam soil samples were performed to study heavy metal attenuation by two soils with different physical and chemical properties. Reacted soil columns were leached with synthetic acid rain to study the mobility of attenuated heavy metals under leaching conditions. This study demonstrates that cation exchange, surface adsorption, chelation with solid organic material, and precipitation were the important attenuation mechanisms for the heavy metals (Cd, Cr, Cu, Mo, Ph, and Zn). Adsorption on soil hydrous oxide surfaces was the primary attenuation mechanism for Cd and Zn in both soils, and for Cu in a soil with low organic matter content. Wastewater solution pH is also an important factor that influences the retention of heavy metals. Cadmium, Cu, Cr, and Zn became mobile after prolonged application of spiked wastewater solution, either through saturation of soil adsorption sites or due to decreasing pH. Only Cr, Pb, and Mo, which are attenuated primarily through precipitation, show significant net retention by soil. Acid rain water removed heavy metals left in the column residual pore solution and weakly sorbed heavy metals in the soils, and has the ability to mobilize some strongly attenuated heavy metals, especially when the soil organic matter content is high. The results have important applications in predicting heavy metal mobility in contaminated soil, the disposal of acid mine drainage, and assessing the risks of landfall leachate leakage.  相似文献   

8.
Adsorption of Cr(VI) on γ-alumina was investigated as a function of ionic strength (0.001, 0.01 and 0.1 M NaNO3), pH (4-10), Cr(VI) concentration (10−4 or 10−5 M with 5 g/L solid) and pCO2 (0, atmospheric, 2.5%). Cr(VI) sorption is significant at low pH and decreases with increasing pH, with 50% of the Cr(VI) adsorbed between pH ∼6.5 and 8. Adsorption varies little with ionic strength or pCO2 under most of the studied conditions. However, at low pH under high ionic strength and especially at high ionic strength and high pCO2, Cr(VI) sorption on γ-alumina is suppressed. The adsorption edge data were used to parameterize constant capacitance (CCM), diffuse double layer (DLM) and triple layer (TLM) surface complexation models. None of the models entirely captures the full range of observed adsorption dependence on ionic strength and sorbate/sorbent ratio. The best fits to the full dataset are produced by the CCM, mostly because it has ionic-strength dependent stability constants. The more sophisticated TLM, which requires the most fitting parameters, does not produce better fits than the simpler CCM or DLM approaches for the conditions tested in this study.  相似文献   

9.
The adsorption behavior of chromate on two variable charge soils (Oxisol and Ultisol) was investigated through batch experiments at different ionic strengths and pH values. The adsorption of chromate on the variable charge soils was found to be strongly dependent on the pH of the soil solutions. A characteristic pH was observed, which corresponds to the intersection of the chromate adsorption—pH curves at different ionic strengths. The characteristic pH values are 5.50 for Oxisol and 5.04 for Ultisol, close to the point of zero salt effect (PZSE) of these soils. The zeta potentials measured for these soils provide the evidences to support the interpretation of the effect of ionic strength on the adsorption of chromate on these variable charge soils. The adsorption behavior of chromate was interpreted by a schematic representation of chromate distribution at increasing ionic strength. The chromate desorption–pH curves were also found to intersect at pH of 5.15 and 4.89 for the Oxisol and Ultisol, respectively. It is considered that chromate adsorption by the variable charge soils was mainly determined by the electrostatic potential on the adsorption plane, which was controlled by the ionic strength of the soil solutions.  相似文献   

10.
The adsorption process of dimethoate and 2,4-dichloro-phenoxy acetic acid (2,4-D) on Jordan Valley soils from aqueous solution at 25 °C has been studied. The adsorption isotherms may be classified as L-type of the Giles classification. The Kads values (Freundlich equation) vary between 1.01 (JV5) and 10.36 (JV7) for dimethoate insecticide and between 4.41 (JV5) and 14.87 (JV7) for 2,4-D herbicide, depending on the soil type. The adsorption of 2,4-D herbicide on soils in the study area is about threefold higher than that of dimethoate insecticide. The adsorption process of dimethoate and 2,4-D pesticides seem to be primarily controlled by the organic matter content of the soils and the clay content (most especially montmorillonite).  相似文献   

11.
高岭石对重金属离子的吸附机理及其溶液的pH条件   总被引:14,自引:0,他引:14  
高岭石对Cu^2+,Pb^2+离子的吸附实验及高岭石的溶解实验表明,高岭石对重金属离子的吸附有别于石英单一表面配位模式,离子交换和表面配位模式并存,并随溶液pH由酸性往碱性的变化发生规律性的演替:pH<6.5时主要表现为外圈层配位的离子交换吸附,且在pH<4时由于受到高岭石表层中铝的高溶出及溶液中较高离子强度的影响,高岭石对Cu^2+,Pb^2+离子的吸附率较低,pH为5~6时由于高岭石端面的荷电性为近中性,吸附率则有明显的提升并且表现为一个吸附平台;pH>6.5时离子交换和表面配位均为重要吸附机制,pH再升高时沉淀机制则起着重要作用。研究表明,pH调控高岭石-水界面溶解与质子化-去质子化反应过程,并影响着Cu^2+,Pb^2+离子的吸附行为。最后采用Sverjensky(1993)表面配位的物理模型对吸附结果作了描述。  相似文献   

12.
溶液介质条件对重金属离子与石英表面反应的影响   总被引:12,自引:2,他引:10  
实验研究表明,随着溶液PH值的升高石芟夺Cu^2+、Pb^2_、Cd^2+等重金属离子的吸附量和表面吸附覆盖率逐渐增大,而表面反应产物的结合开矿相应地出现由单核化合物、多核化合物〖SOCu4(OH)3^4+〗,直至表面沉淀(SOH…Cu(OH)2(s)〗。随着温度升高,石英对Cu^2+、Pb^2+、Cd^2+等重金属离子的吸附量逐渐减是随着溶液离子强度的增大,石英对Cu^2+离子的吸附量和表面离了  相似文献   

13.
The ability of ochre to remove Pb(II) and Cu(II) from aqueous media has been studied by batch sorption studies varying the contact time, initial metal concentration, initial solution pH and temperature to understand the adsorption behaviour of these metals through adsorption kinetics and isotherms. The pH of the solution and the temperature controlled the adsorption of metal ions by ochre and rapid uptake occurred in the first 30 min of reaction. The kinetics of adsorption followed a pseudo-second-order rate equation (R 2 > 0.99) and the isotherms are well described by the Freundlich model. Adsorption of metals onto ochre is endothermic in nature. Between the two metals, Pb(II) showed more preference towards the exchangeable sites on ochre than Cu(II). This study indicates that ochre is a very effective adsorbent in removing Pb(II) and Cu(II) from the aqueous environment with an adsorptive capacity of 0.996 and 0.628 mg g?1 and removal efficiency of 99.68 and 62.80 %, respectively.  相似文献   

14.
Experimental studies on the retention of metals (Cu, Co, Ni, and Zn) in bentonite samples from the Grau Region (Northern Peru) have been accomplished using monometallic, bimetallic, trimetallic, and tetrametallic solutions. Parameters such as pH and concentration of dissolved metals and organic compounds have been evaluated by means of batch adsorption experiments. Adsorption rates indicate the suitability of these bentonites in the environmental industry for heavy metals retention purposes. In addition to its quality as physical barrier to avoid the dispersion through the environment of polluted leachates, bentonite, due to its high cation exchange capacity, can act also as a chemical barrier, protecting the quality of surface and groundwater systems, while limiting the migration of heavy metals in solid residues or sludge stocked in security landfills. Adsorption rates of tested bentonites were proved to decrease when concentrations of both metal and organic compounds, as well as the number of ionic species, increase in solution; additionally, lower metal removal rates from solution were obtained when extremely acidic conditions were achieved.  相似文献   

15.
马玉龙  许梓荣  尤萍 《矿物学报》2005,25(2):147-152
采用离子交换法制得载铜蒙脱石,研究蒙脱石和载铜蒙脱石对亚甲基蓝(MB)的吸附性能,结果表明载铜蒙脱石的吸附能力低于蒙脱石。温度、介质pH值和离子强度对吸附剂的吸附性能有不同程度的影响;蒙脱石和载铜蒙脱石吸附MB等温线较好地符合BET和Langmuir等温方程,其吸附过程均为热力学自发过程。  相似文献   

16.
我国部分地区土壤污染形势严峻,主要表现为Cu等重金属元素严重超标。污水灌溉以及含Cu饲料过量使用等不合理的农业生产方式是导致Cu在耕地中富集的主要因素,严重威胁粮食安全和人类健康。以河北保定典型污灌区为研究区,通过静态吸附批量实验探究土壤吸附Cu的动力学和热力学特性。吸附动力学模型和等温吸附经验模型中得到的参数一致表明,表层土壤S1对Cu的吸附能力强于底部土壤S2。S1的有机质含量高于S2,提供了更多的表面吸附点位,这可能是导致土壤S1对Cu的吸附能力更强的原因之一。离子强度对土壤Cu吸附率的影响较小。溶液pH和溶解性有机物(DOM)含量对土壤Cu吸附率的影响明显,pH值与吸附量呈正相关,DOM浓度与吸附量呈负相关。由于土壤对pH有很强的缓冲能力,短时间的酸雨可能不会导致Cu的迁移。施用有机肥时,有机肥浸出液中高浓度的DOM可能会与Cu形成水溶性Cu-DOM络合物,促进Cu在土壤中的迁移,导致浅层地下水污染。  相似文献   

17.
The effects of Cd on the adsorption of an aquatic fulvic acid (FA) to the surface of Bacillus subtilis were investigated from pH 2.5 to 7.0, at fixed ionic strength (0.1 M NaClO4) and at ambient temperature (22 °C). Cd (14 mg/l) had no effect on FA adsorption at pH<5 but increased FA adsorption at pH>6. The effects of Cd (0, 14 mg/l) on FA adsorption to B. subtilis were further examined as a function of initial FA concentration (0–45 mg C/l) at pH 6.5. FA adsorption isotherms also were measured at pH 6.5 as a function of dissolved Cd concentration (0–14 mg/l) at three initial FA concentrations (4, 8, 22 mg C/l). At all FA concentrations studied at pH 6.5, FA adsorption increased with increasing initial total Cd concentration.

Under all studied conditions, preferential adsorption of high- to intermediate-molecular-weight FA components to B. subtilis resulted in a fractionation of the FA pool, with lower-molecular-weight components remaining in solution. At pH>6, Cd further enhanced the adsorption of high- to intermediate-molecular-weight FA components but did not significantly enhance the adsorption of lower-molecular-weight components. Hence, the overall process of adsorptive fractionation was not altered significantly by the presence of Cd.

Overall, the results of this study (1) demonstrate that FA adsorption to bacterial surfaces can be altered by the presence of a metal cation, and (2) provide further evidence that microbe–metal–ligand interactions may significantly affect the mobility and fate of natural organic matter in the subsurface.  相似文献   


18.
在室温和pH值为中性的开放体系下,选用川滇黔地区与峨眉山玄武岩自然铜矿床相关的不同类型矿物,对配制的铜胶体溶液和cu^2+溶液进行吸附试验,结果表明,矿物对铜胶体和cu^2+的吸附率从高到低分别为硫化物、有机质(沥青)、粘土矿物、硅酸盐矿物。这一实验结果与川滇黔地区自然铜矿的赋矿围岩为玄武质角砾岩、铝土一粘土质沉积岩,自然铜与有机质伴生等地质现象一致,并表明有机质在自然铜成矿作用中不仅提供了还原条件,而且是很好的吸附剂。文章还探讨了与峨眉山玄武岩有关的自然铜矿床中铜的迁移形式:认为铜不仅能以离子或络合物的形式迁移,还可能以纳米粒级单质铜的形式迁移。  相似文献   

19.
Clays, particularly kaolinite, are promising adsorbents for the treatment of textile effluents, but there is a need of better understanding the mechanisms of adsorption, especially in the case of anionic dyes. Thus, the removal of RR120 anionic dye was investigated using Tunisian raw clay (TBK) composed of kaolinite and illite, and a standard kaolinite (KGa-2), and conducting batch experiments by varying different parameters (contact time, ionic strength, concentration, temperature). We investigated the clays’ surface charges by electrophoretic mobility measures and the dye-clay interactions during adsorption, by the streaming-induced potentials (SIP). The results showed that KGa-2 has higher adsorption capacity for RR120 dye than TBK clay, moreover enhanced by increasing the ionic strength and/or lowering the pH of the aqueous. The SIP results showed an increase of negative charges for both clays, reflecting the adsorption of the anionic dye on the positive charges of the amphoteric surfaces of the clays. The SIP magnitudes indicated a higher adsorption rate for KGa-2 in accordance with the kinetic study. The Sips model that described the best adsorption isotherms indicates lateral interactions of the dye molecules, stronger in the case of KGa-2 than TBK. Also, the dye molecules form a thinner layer on KGa-2 surfaces. In addition, the dye molecule’s structure was not altered, as verified by mass spectrometry. The adsorption process was feasible and spontaneous and favored at ambient temperature. Thus, kaolinite-rich clays are effective in the removal of anionic dyes in aqueous solution and potential good adsorbents in wastewater treatment.  相似文献   

20.
The fate and transport of uranium in contaminated soils and sediments may be affected by adsorption onto the surface of minerals such as montmorillonite. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the adsorption of uranyl (UO22+) onto Wyoming montmorillonite. At low pH (∼4) and low ionic strength (10−3 M), uranyl has an EXAFS spectrum indistinguishable from the aqueous uranyl cation, indicating binding via cation exchange. At near-neutral pH (∼7) and high ionic strength (1 M), the equatorial oxygen shell of uranyl is split, indicating inner-sphere binding to edge sites. Linear-combination fitting of the spectra of samples reacted under conditions where both types of binding are possible reveals that cation exchange at low ionic strengths on SWy-2 may be more important than predicted by past surface complexation models of U(VI) adsorption on related montmorillonites. Analysis of the binding site on the edges of montmorillonite suggests that U(VI) sorbs preferentially to [Fe(O,OH)6] octahedral sites over [Al(O,OH)6] sites. When bound to edge sites, U(VI) occurs as uranyl-carbonato ternary surface complexes in systems equilibrated with atmospheric CO2. Polymeric surface complexes were not observed under any of the conditions studied. Current surface complexation models of uranyl sorption on clay minerals may need to be reevaluated to account for the possible increased importance of cation exchange reactions at low ionic strengths, the presence of reactive octahedral iron surface sites, and the formation of uranyl-carbonato ternary surface complexes. Considering the adsorption mechanisms observed in this study, future studies of U(VI) transport in the environment should consider how uranium retardation will be affected by changes in key solution parameters, such as pH, ionic strength, exchangeable cation composition, and the presence or absence of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号