首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales--The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.  相似文献   

2.
As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for ISW identification based on freezing point at the sea surface, and we study spatial distribution of ISW in front of the Amery Ice Shelf (AIS) and its flow path in Prydz Bay by analyzing hydrographic data from Australian cruises in 2001 and 2002, as well as Chinese cruises in 2003, 2005, 2006, and 2008, all being made in the austral summer. The relatively cold and fresh ISW occurred as several discrete water blocks with cold cores in front of the AIS, within the depth range of 100?600 m, under the seasonal thermocline. ISW had obvious temporal and spatial variations and the spatial distribution pattern changed greatly after 2005. Most of ISW was concentrated west of 73°E during 2001 to 2003 and 2006, but it was widespread to east in 2005 and 2008. In all observation years, a small amount of cold ISW always occurs at the west end of the AIS front section, where the coldest ISW in the whole section also occurred in 2001, 2003 and 2006. Considering general cyclonic circulation pattern under the AIS, the ISW flowing out from west end of the AIS front might have experienced the longest cooling period under ice shelf, so it would have the lowest temperature. Analysis of data from meridian sections in Prydz Bay in 2003 implied that ISW in the west could spread north to the continental break along the east flank of the Fram Bank near 70.5°E, mix with the upwelling Circumpolar Deep Water and possibly contribute to the formation of AABW.  相似文献   

3.
用Nino 3指数、印度洋单极指数、偶极子指数描述热带太平洋、印度洋海表温度 (SST)的年际异常 ,季节分析表明 :冬季Nino3区与热带印度洋海表温度距平 (SSTA)相互关系表现为单极 ,且 1976年以后两者的相互关系减弱 ,其可能原因 :一是冬季是ENSO(厄尔尼诺 )事件的盛期 ;二是冬季西太平洋暖水区东移 ,造成两洋的垂直纬向环流耦合减弱。夏季两者相互关系表现为偶极 ,1976年以后两者的相互关系加强 ,其可能原因 ,一是夏季是偶极子盛期 ,ENSO事件的发展期 ;二是夏季西太平洋暖水区虽然东移 ,但暖水区位置偏北 ,且东南印度洋的上升支强度增大 ,造成两洋的纬向环流耦合更强烈  相似文献   

4.
Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon(SASM) and upper ocean heat content(HC) in the tropical Indo-Pacific Ocean.The monsoon was differentiated into a Southwest Asian Summer Monsoon(SWASM)(2.5°–20°N,35°–70°E) and Southeast Asian Summer Monsoon(SEASM)(2.5°–20°N,70°–110°E).Results show that before the 1976/77 climate shift,the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean.The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow.The tropical Pacific impacted the SWASM through the remote forcing of ENSO.After the 1976/77 shift,there was a close relationship between equatorial central Pacific HC and the SEASM.However,before that shift,their relationship was weak.  相似文献   

5.
Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.  相似文献   

6.
The jet structure of the Southern Ocean front south of Australia is studied in stream-coordinate with a new altimeter product—Absolute Dynamic Topography (ADT) from AVISO. The accuracy of the ADT data is validated with the mooring data from a two-year subantarctic-front experiment. It is demonstrated that the ADT is consistent with in-situ measurements and captures the meso-scale activity of the Antarctic Circumpolar Current (ACC). Stream-coordinate analysis of ADT surface geostrophic flows finds that ACC jets exhibit large spatio-temporal variability and do not correspond to particular streamfunction values. In the circumpolar scope ACC jets display a transient fragmented pattern controlled by topographic features. The poleward shift of jet in streamfunction space, as revealed by a streamwise correlation method, indicates the presence of meridional fluxes of zonal momentum. Such cross-stream eddy fluxes concentrate the broad ACC baroclinic flow into narrow jets. Combined with a recent discovery of gravest empirical mode (GEM) in the thermohaline fields, the study clarifies the interrelationship among front, jet and streamfunction in the Southern Ocean.  相似文献   

7.
Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.  相似文献   

8.
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.  相似文献   

9.
The heat distributions in the upper layers of the ocean have been studied and some important low frequency oscillations (LFOs) are already found and quantified by using various characteristic factors. In this paper, the ‘heat center' of a sea area is defined with a simple method. Then the temperature data set of the upper layer of the global ocean (from surface down to 400 m, 1955-2003) is analyzed to detect the possible LFOs. Not only some zonal LFOs, which were reported early, but also some strong LFOs of the vertical and meridional heat distribution, which might imply some physical sense, are detected. It should be noted that the similar vertical oscillation pattern can be found in the Pacific Ocean, Atlantic Ocean and Indian Ocean. Results from some preliminary studies show that the vertical LFO might be caused by the solar irradiance anomalies. This study may help reveal some unknown dynamical processes in the global oceans and may also benefit other related studies.  相似文献   

10.
By using a new heat budget equation that is closely related to the sea surface temperature (SST) and a dataset from an ocean general circulation model (MOM2) with 10-a integration (1987-1996), the relative importance of various processes determining SST variations in two regions of the Indian Ocean is compared. These regions are defined by the Indian Ocean Dipole Index and will be referred to hereafter as the eastern (0^*-10^*S, 90^*-110^*E) and western regions (10^*S- 10^*N, 50^*-70^*E), respectively. It is shown that in each region there is a falling of SST in boreal summer and a rising in most months of other seasons, but the phases are quite different. In the eastern region, maximum cooling rate occurs in July, whereas in the western region it occurs in June with much larger magnitude. Maximum heating rate occurs in November in the eastern region, but in March in the western one. The western region exhibits another peak of increasing rate of SST in October, indicating a typical half-year period. Net surface heat flux and entrainment show roughly the same phases as the time-varying term, but the former has much larger contribution in most of a year, whereas the latter is important in the boreal summer. Horizontal advection, however, shows completely different seasonal variations as compared with any other terms in the heat budget equation. In the eastern region, it has a maximum in June/November and a minimum in March/ September, manifesting a half-year period; in the western region, it reaches the maximum in August and the minimum in November. Further investigation of the horizontal advection indicates that the zonal advection has almost the opposite sign to the meridional advection. In the eastern region, the zonal advection is negative with a peak in August, whereas the meridional one is positive with two peaks in June and October. In the western region, the zonal advection is negative from March to November with two peaks in June and November, whereas the meridional one is positive with one peak in July. Different phases can be clearly seen between the two regions for each component of the horizontal advection. A detailed analysis of the data of 1994, a year identified when the Indian Ocean dipole event happened, indicates that the horizontal advection plays a dominant role in the remarkable cooling of the eastern region, in which zonal and meridional advections have the same sign of anomaly. However, in the western region in 1994 no any specialty was shown as compared with other years, for the SST anomaly is not positive in large part of this region. All these imply that the eastern and western regions may be related in a quite complex way and have many differences in dynamics. Further study is needed.  相似文献   

11.
Hydrographic data from eleven 1986–1991 cruises at zonal sections near 8°N from the Philippine coast to 130°E were used to examine thermohaline structures and water mass properties of the western boundary currents there, especially those of the Mindanao Undercurrent (MUC). The finding that the MUC consisted of two water masses with salinity of 34.6 at 26.9 σt and 34.52 at 27.2 σt which were remnants of the lower part of the Southern Pacific Subtropical Water (SPSW) and of the Antarctic Intermediate Water (AAIW) of South Pacific origin, respectively, showed that the MUC was not a local transient but originated elsewhere. As the MUC flowed from 7.5°N to 8°N, part of it carrying the SPSW turns anticyclonically and eastward. The Northern Pacific Intermediate Water (NPIW) often joins the MUC, which suggests that the NPIW carried by the MC partly returns northward as a result of the shear between the MC and the MUC or other processes. The shear instability provides the energy for the irregular fluctuation of the MUC. Contribution No. 3256 from the Institute of Oceanology, Chinese Academy of Sciences. Project 49176255 and 49706066 supported by NSFC, and also by Foundation of Post-doctoral Research.  相似文献   

12.
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.  相似文献   

13.
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (IOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an El Niño (La Niña) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).  相似文献   

14.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

15.
The latest sharp uplift of the Tibetan Plateau and adjacent mountains occurred at the end of the early Pleistocene. The uplift of the Plateau resulted from Late Mesozoic-Cenozoic comp ressional structure due to the subduction of the Indian Plate beneath the Asian continent. This event definitively effected the formation of basin-mountain relief, Cenozoic basin deformation, large scale aridity and desertification of western China. The Australasian meteorites impact event happened ca. 0.8 Ma ago, located in the triangle area of the Indian Ocean ridge (20°S/67°E) . The impact may have resulted in an acceleration of speeding of the Indian Ocean ridge pushing the Indian Plate to subduct rapidly northward. Thus, the impact event can give reasonable explanation for the dynamic background of the latest rapid uplift of the Tibetan Plateau and the continental deformation of western China and even of the Middle Asia.  相似文献   

16.
青藏高原-热带印度洋地区大气热源的时空变化特征   总被引:1,自引:0,他引:1  
为了寻求青藏高原一热带印度洋地区大气热源空间变化的敏感区,进一步深入研究季风的形成、变异和预测,利用NCEP1979-2008年的再分析资料计算分析了青藏高原一热带印度洋地区30年来不同季节大气热源分布的气候特征,并且利用经验正交函数分解研究了该区大气热源在夏、冬季的时空变化特征。结论如下:春季大气热源有明显的经向差异;夏季的热源明显比春季的热源强度强,范围广,热源最强中心在孟加拉湾北部大陆边缘;秋季热源区域明显南缩,热源强度较夏季明显减弱;冬季大气热源呈西西南一东东北方向分布,大气热源位置继续南移。对于夏季,前3个模态分别反映了青藏高原一热带印度洋地区大气热源的纬向差异型、经向差异型、西北一东南分布型。对于冬季,前3个模态分别反映了青藏高原一热带印度洋地区大气热源的经向差异主导型、经向差异型、纬向差异型。  相似文献   

17.
The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.  相似文献   

18.
Performances of 5 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating the chlorophyll concentration over the tropical Indian Ocean are evaluated. Results show that these models are able to capture the dominant spatial distribution of observed chlorophyll concentration and reproduce the maximum chlorophyll concentration over the western part of the Arabian Sea, around the tip of the Indian subcontinent, and in the southeast tropical Indian Ocean. The seasonal evolution of chlorophyll concentration over these regions is also reproduced with significant amplitude diversity among models. All of 5 models is able to simulate the interannual variability of chlorophyll concentration. The maximum interannual variation occurs at the same regions where the maximum climatological chlorophyll concentration is located. Further analysis also reveals that the Indian Ocean Dipole events have great impact on chlorophyll concentration in the tropical Indian Ocean. In the general successful simulation of chlorophyll concentration, most of the CMIP5 models present higher than normal chlorophyll concentration in the eastern equatorial Indian Ocean.  相似文献   

19.
Tian  Ying  Wang  Qi 《中国海洋湖沼学报》2010,28(6):1281-1289
We analyze statistically different definitions of the South China Sea summer monsoon (SCSSM) onset are to establish a SCSSM onset time series that is more recognizable by a majority of indicators. With the acknowledged index, we determine a key area (105°E–112.5°E, 7.5°N–12.5°N) and define the zonal wind component in this key area as a new SCSSM onset index, using daily mean reanalysis data of the National Center for Environmental Prediction/National Center for Atmospheric Research. The atmospheric circulations before and after the onset of the SCSSM determined using the index defined in this paper are preliminarily studied. Results show that the Somalia cross-equatorial flow is enhanced, the strongest westerly wind in the tropical Indian Ocean shifts northward, the cyclone couple in the Bay of Bengal and the Southern Hemisphere weaken and move eastward, convection over the South China Sea increases, and the subtropical high retreats from the South China Sea after the outbreak of the SCSSM. By analyzing the atmospheric circulation, it is found that in 1984 and 1999, the SCSSM broke out in pentads 29 and 23, respectively, which is consistent with the onset times determined using our index.  相似文献   

20.
This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010.Results show that the subduction induced by mesoscale eddies accounts for about 31%of the total subduction of ESTMW formation.The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies.The ESTMW trapped by all eddies in May reaches up to about 2.8×1013m3,which is approximately 16%of the total ESTMW volume.The eddy-trapped ESTMW moves primarily westward,with its meridional integration at 18°–30°N reaching about 0.17Sv,which is approximately 18%of the total zonal ESTMW transport in this direction,at 140°W.This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号