首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By analyzing the Chandra data of the central region of the galaxy cluster PKS 0745-191, the properties of a patch of bright X-ray gas distributed along the radio structure in the west of the central galaxy are investigated. This gas is found to be cooler and denser than the ambient gas. According to the calculation based on radio observations, the pressure gradient of the radio gas in the west is greater than that in the east. It means that there is interaction between that patch of cool X-ray gas and the radio gas. The cool gas is either formed by outer cool gas supported and disturbed by the radio gas, or is brought out from the central galaxy by radio buoyant bubbles. Assuming that the gas is in pressure-gravity balance, the volume filling factor of the X-ray gas in the central region is calculated to be b = 0.69 ± 0.28, and the properties of the relativistic particles in the radio gas, as well as the expansion effect of the radio gas on the cooling flow, are discussed.  相似文献   

2.
《New Astronomy Reviews》2002,46(2-7):149-153
We present a detailed HST/WFPC2 study of the complex network of emission-line filaments and blue continuum emission associated with the lobes of the radio source at the center of the nearby strong cooling-flow cluster Abell 2597. This object is a prototypical “blue-lobed” cluster radio galaxy. We discuss ways in which the radio source is interacting with the cool dense gas around it, and derive detailed constraints on the physical properties of the gas. We also resolve the blue continuum emission, which is most likely due to young stars, and discuss possible relationships between the radio source, the supply of gas and the triggering mechanisms for the active nucleus and the star formation.  相似文献   

3.
Multifrequency radio observations of the radio galaxy 3C 459 using MERLIN, VLA and the EVN and an optical Hubble Space Telescope ( HST ) image using the F702W filter are presented. The galaxy has a very asymmetric radio structure, a high infrared luminosity and a young stellar population. The eastern component of the double-lobed structure is brighter, much closer to the nucleus and is significantly less polarized than the western one. This is consistent with the jet on the eastern side interacting with dense gas, which could be due to a merged companion or dense cloud of gas. The HST image of the galaxy presented here exhibits filamentary structures and is compared with the MERLIN 5-GHz radio map. EVN observations of the prominent central component, which has a steep radio spectrum, show a strongly curved structure suggesting a bent or helical radio jet. The radio structure of 3C 459 is compared with other highly asymmetric, Fanaroff–Riley II radio sources, which are also good candidates for studying jet–cloud interactions. Such sources are usually of small linear size and it is possible that the jets are interacting with clouds of infalling gas that fuel the radio source.  相似文献   

4.
星系团PKS 0745-191中射电气体对X射线气体的加热   总被引:1,自引:1,他引:0  
对星系团中相对论性粒子的能量演化做了数值计算,在此基础上,联合分析Chandra卫星数据和VLA射电观测结果,计算了星系团PKS0745-191中高能射电气体对X射线气体的加热作用,发现在射电气体幂律谱能量下限为0.001erg时,射电气体对X射线气体的加热不足以补充X射线气体的辐射能损.然后在计算研究了不同能量下限时射电气体对X射线气体的加热作用,并估计了射电气体的能量下限.  相似文献   

5.
We show that the northern middle radio lobe of Cen A, an intriguing and much debated manifestation of radio lobe asymmetry, can be understood in terms of a direct interaction of the northern jet with a gaseous cloud associated with a stellar shell. This same basic mechanism was proposed earlier for the northern inner lobe, but new data allows a more detailed case to be made for the northern middle lobe. Although such an interaction can presently be demonstrated only for Cen A, the nearest radio galaxy, it is likely to be a fairly common occurrence and it provides an alternative to models invoking episodic nuclear activity, possibly accompanied with jet precession, for radio galaxies with multiple lobes and S-shapes. This proposed scenario may also play a key role in the origin of prominent radio galaxy morphological classes, such as the Wide-Angle-Tail sources and the Z-symmetric X-shaped radio sources. The strong tendency for radio lobes to be more distorted in double radio sources with jets that are in closer alignment with the optical major axis of the host elliptical galaxy can likewise be understood in terms of jet–shell interactions. In the frequent cases when jet activity is triggered by mergers of a large elliptical galaxy with a disk galaxy containing cold gas the impact of the gas associated with stellar shells upon the jets is likely to have significant manifestations.  相似文献   

6.
We present an investigation of the relationships between the radio properties of a giant radio galaxy MRC B0319−454 and the surrounding galaxy distribution with the aim of examining the influence of intergalactic gas and gravity associated with the large-scale structure on the evolution in the radio morphology. Our new radio continuum observations of the radio source, with high surface brightness sensitivity, images the asymmetries in the megaparsec-scale radio structure in total intensity and polarization. We compare these with the three-dimensional galaxy distribution derived from galaxy redshift surveys. Galaxy density gradients are observed along and perpendicular to the radio axis: the large-scale structure is consistent with a model wherein the galaxies trace the ambient intergalactic gas and the evolution of the radio structures are ram-pressure limited by this associated gas. Additionally, we have modelled the off-axis evolution of the south-west radio lobe as deflection of a buoyant jet backflow by a transverse gravitational field: the model is plausible if entrainment is small. The case study presented here is a demonstration that giant radio galaxies may be useful probes of the warm-hot intergalactic medium believed to be associated with moderately over dense galaxy distributions.  相似文献   

7.
We present Chandra X-ray observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the cluster's X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightness, approximately 25-35 kpc in diameter, that are coincident with Hydra A's radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest that the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is approximately 600 Myr in the inner 10 kpc. These properties are consistent with the presence of an approximately 34 M middle dot in circle yr-1 cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material that may be cooling at larger radii remains elusive. A bright, unresolved X-ray source is present in the BCG's nucleus, coincident with the radio core. Its X-ray spectrum is consistent with a power law absorbed by a foreground NH approximately 4x1022 cm-2 column of hydrogen. This column is roughly consistent with the hydrogen column seen in absorption toward the less, similar24 pc diameter VLBA radio source. Apart from the point source, no evidence for excess X-ray absorption above the Galactic column is found.  相似文献   

8.
Several radio galaxies are known that show radio morphological signatures that are best interpreted as restarting of nuclear activity after a period of quiescence. The conditions surrounding the phenomenon of nuclear recurrence are not understood. In this paper we have attempted to address this question by examining the nuclear fuelling characteristics in a sample of restarting radio galaxies. We have examined the detection rate for molecular gas in a representative sample of nine restarting radio galaxies, for seven of which we present new upper limits to the molecular gas mass derived from CO line observations we made with the IRAM 30-m telescope. We derive a low CO detection rate for the relatively young restarted radio galaxies suggesting that the cessation of the nuclear activity and its subsequent restarting may be a result of instabilities in the fuelling process rather than a case of depletion of fuel followed by a recent fuel acquisition. It appears that abundant molecular gas content at the level of few  108–109 M  does not necessarily accompany the nuclear restarting phenomenon. For comparison we also discuss the molecular gas properties of five normal giant radio galaxies, three of which we observed using Swedish-ESO Millimetre Telescope (SEST). Despite obvious signs of interactions and nuclear dust discs none of them has been found to host significant quantities of molecular gas.  相似文献   

9.
We consider turbulence generated by galaxies moving transonically through the intracluster gas. We show that neither the gravitational drag nor the gas stripping from the galaxies are able, by themselves, to generate turbulence at a level required to feed the dynamo in the intracluster gas. Some implications for cluster radio halos are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Giant gaseous layers(termed “superdisks”) have been hypothesized in the past to account for the strip-like radio emission gap(or straight-edged central brightness depression) observed between twin radio lobes, in over a dozen relatively nearby powerful Fanaroff-Riley Class II radio galaxies. They could also provide a plausible alternative explanation for a range of observations. Although a number of explanations have been proposed for the origin of the superdisks, little is known about their material content. Some X-ray observations of superdisk candidates indicate the presence of hot gas, but a cool dusty medium also seems to be common. If they are entirely or partly composed of neutral gas, then it may be directly detectable and we report here a first attempt to detect/image any neutral hydrogen gas present in the superdisks that are inferred to be present in four nearby radio galaxies. We have not found a positive H I signal in any of the four sources, resulting in tight upper limits on the H I number density in the postulated superdisks,estimated directly from the central rms noise values of the final radio continuum subtracted image. The estimated ranges of the upper limit on neutral hydrogen number density and column density are 10^-4-10^-3 atoms per cm3 and 10^19-10^20 atoms per cm^2, respectively. No positive H I signal is detected even after combining all the four available H I images(with inverse variance weighting). This clearly rules out an H I dominated superdisk as a viable model to explain these structures, however, the possibility of a superdisk being composed of warm/hot gas still remains open.  相似文献   

11.
We present results for the first three low-power radio galaxies from the B2 bright sample to have been observed with Chandra . Two have kiloparsec-scale radio jets, and in both Chandra resolves jet X-ray emission, and detects soft X-ray core emission and an X-ray-emitting galaxy-scale atmosphere of luminosity a few ×1041 erg s−1. These are the first detections of X-ray jets in low-power radio galaxies more distant than Centaurus A and M87. The cooling time of the galaxy-scale gas implies mass infall rates of the order of 1 M yr−1. The gas pressure near the jets is comparable to the minimum pressure in the jets, implying that the X-ray-emitting gas may play an important role in jet dynamics. The third B2 radio galaxy has no kiloparsec-scale radio jet, and here only soft X-ray emission from the core is detected. The ratio of X-ray to radio flux is similar for the jets and cores, and the results favour a synchrotron origin for the emission. Kiloparsec-scale radio jets are detected in the X-ray in ∼7-ks exposures with Chandra more readily than in the optical via Hubble Space Telescope snapshot surveys.  相似文献   

12.
We investigate the possibility of explaining the observed ripples in the X-ray gas in the Perseus and Virgo clusters through natural oscillations of a perturbed radio cocoon. Such a perturbation would result from an expanding overpressured cocoon of radio plasma overshooting its pressure equilibrium point with the cluster gas. The oscillations are heavily acoustically damped, and energy injection rates required to sustain them are consistent with observed AGN powers. Viscous dissipation of sound waves generated by these oscillations heats the cluster gas. By comparing our model with observations in Perseus and Virgo, we reproduce the observed ripple separations and amplitudes. Spitzer viscosity is largely sufficient in explaining the gas density profile, suggesting that thermal conductivity is likely to be heavily suppressed. In the central regions, viscous heating can suppress cooling flows on timescales exceeding the radio source lifetime.  相似文献   

13.
The interaction of optically emitting clouds with warm X-ray gas and hot, tenuous radio plasma in radio jet cocoons is modelled by 2D compressible hydrodynamic simulations. The initial setup is the Kelvin–Helmholtz instability at a contact surface of density contrast 104. The denser medium contains clouds of higher density. Optically thin radiation is realized via a cooling source term. The cool phase effectively extracts energy from the other gas which is both, radiated away and used for acceleration of the cold phase. This increases the system's cooling rate substantially and leads to a massively amplified cold mass dropout. We show that it is feasible, given small seed clouds of the order of  100 M  , that all of the optically emitting gas in a radio jet cocoon may be produced by this mechanism on the propagation time-scale of the jet. The mass is generally distributed as   T −1/2  with temperature, with a prominent peak at 14 000 K. This peak is likely to be related to the counteracting effects of shock heating and a strong rise in the cooling function. The volume filling factor of cold gas in this peak is of the order of  10−5–10−3  and generally increases during the simulation time.
The simulations tend towards an isotropic scale-free Kolmogorov-type energy spectrum over the simulation time-scale. We find the same Mach-number density relation as Kritsuk & Norman and show that this relation may explain the velocity widths of emission lines associated with high-redshift radio galaxies, if the environmental temperature is lower, or the jet-ambient density ratio is less extreme than in their low-redshift counterparts.  相似文献   

14.
Images of neutral hydrogen 21 cm absorption and radio continuum emission at 1.4 GHz from Mrk 273 were made using the Very Long Baseline Array and Very Large Array. These images reveal a gas disk associated with the northern nuclear region with a diameter 0&farcs;5 (370 pc) at an inclination angle of 53 degrees. The radio continuum emission is composed of a diffuse component plus a number of compact sources. This morphology resembles those of nearby, lower luminosity starburst galaxies. These images provide strong support for the hypothesis that the luminosity of the northern source is dominated by an extreme compact starburst. The H i 21 cm absorption shows an east-west gradient in velocity of 450 km s-1 across 0&farcs;3 (220 pc), which implies an enclosed mass of 2x109 M middle dot in circle, comparable to the molecular gas mass. The brightest of the compact sources may indicate radio emission from an active nucleus, but this source contributes only 3.8% to the total flux density of the northern nuclear regions. The H i 21 cm absorption toward the southeast radio nucleus suggests infall at 200 km s-1 on scales 相似文献   

15.
Forged by the development of radar during World War II, radio astronomy revolutionized astronomy during the decade after the war. A new universe was revealed, centered not on stars and planets, but on the gas between the stars, on explosive sources of unprecedented luminosity, and on hundreds of mysterious discrete sources with no optical identifications. Using “radio telescopes” that looked nothing like traditional (optical) telescopes, radio astronomers were a very different breed from traditional (optical) astronomers. This pathbreaking of radio astronomy also made it much easier for later “astronomies” and their “telescopes” (X-ray, ultraviolet, infrared, gamma-ray) to become integrated into astronomy after the launch of the space age in the 1960s. This paper traces the history of radio telescopes from 1945 through about 1990, from the era of converted small-sized, military radar antennas to that of large interferometric arrays connected by complex electronics and computers; from the era of strip-chart recordings measured by rulers to powerful computers and display graphics; from the era of individuals and small groups building their own equipment to that of Big Science, large collaborations and national observatories.  相似文献   

16.
Calculations of the energy evolution of relativistic particles in a cluster of galaxies are presented. The heating of the X-ray gas by the radio gas in the cluster PKS 0745-191 is derived using Chandra X-ray data and VLA radio data. It is found that the heating is not sufficient for the radiation loss of the X-ray gas if the lower limit of energy in the power-law spectrum of relativistic electrons is set at 0.001 erg.  相似文献   

17.
We present new radio continuum data at four frequencies for the supermassive, peculiar galaxy NGC 1961. These observations allow us to separate the thermal and non-thermal radio emission and to determine the non-thermal spectral index distribution. This spectral index distribution in the galactic disc is unusual: at the maxima of the radio emission the synchrotron spectrum is very steep, indicating aged cosmic ray electrons. Away from the maxima the spectrum is much flatter. The steep spectrum of the synchrotron emission at the maxima indicates that a strong decline of the star formation rate has taken place at these sites. The extended radio emission is a sign of recent cosmic ray acceleration, probably by recent star formation. We suggest that a violent event in the past, most likely a merger or a collision with an intergalactic gas cloud, has caused the various unusual features of the galaxy.  相似文献   

18.
We present a sample of 16 radio galaxies, each of which is characterized by a wide, elongated emission gap with fairly sharp and straight edges between the two radio lobes. This particular subset of the “superdisk” radio galaxies is chosen because of a highly asymmetric location of the host elliptical galaxy relative to the gap’s central axis. In addition to posing a considerable challenge to the existing models, such a morphology also means that the two jets traverse highly unequal distances through the superdisk material. One thus has a possibility to directly investigate if the marked asymmetry between the two jets’ interaction with the (much denser) ambient medium, during their propagation, has a significant import for the brightness of the hot spot forming near each jet’s extremity. We also propose a new explanation for the formation of superdisks through the merger of a smaller elliptical galaxy with the massive host, in which the gas attached to the infalling galaxy deposits its angular momentum into the host’s circumgalactic gas, thereby causing it to flatten into a fat pancake, or superdisk. The asymmetric location of the host galaxy can be assisted by the kick imparted to it during the merger. We also suggest a physical link between these radio galaxies and those with X-shaped and Z-symmetric radio lobes, commonly believed to arise from mergers of two galactic nuclei, each harboring a supermassive black hole.  相似文献   

19.
We present an investigation into the nature of the jet–gas interactions in a sample of 10 radio galaxies at  2.3 < z < 2.9  using deep spectroscopy of the ultraviolet (UV) line and continuum emission obtained at Keck II and the Very Large Telescope. Kinematically perturbed gas, which we have shown to be within the radio structure in previous publications, is always blueshifted with respect to the kinematically quiescent gas, is usually spatially extended, and is usually detected on both sides of the nucleus. In the three objects from this sample for which we are able to measure line ratios for both the perturbed and quiescent gases, we suggest that the former has a lower ionization state than the latter.
We propose that the perturbed gas is part of a jet-induced outflow, with dust obscuring the outflowing gas that lies on the far side of the object. The spatial extent of the blueshifted perturbed gas, typically ∼35 kpc, implies that the dust is spatially extended at least on similar spatial scales.
We also find interesting interrelationships between UV line, UV continuum and radio continuum properties of this sample.  相似文献   

20.
We present the results of a program to obtain an accurate (better than 100 mas) astrometry of HST images of NGC 1068 and consequently a direct registration with radio images. The optical peak seen in the HST images is located at α = 02h42m40.711s, δ = -00°00′47.81 (J2000, FK5), with an error of 80 mas. The hidden nucleus, as determined by HST imaging polarimetry, falls at α = 02h42m40.710s, δ = -00°00′48.11. It is offset toward the South, i.e. along the radio axis, with respect to the inverted spectrum radio component, S1, by 170 mas (12 pc). This does not rule out that S1 is indeed associated with the obscuring torus and the central engine, but suggests that the nucleus of NGC 1068 might be radio silent or its emission absorbed also at radio wavelengths. An anti-correlation between radio and optical emission is revealed; the radio jet lies on a region of relatively low optical emission and is surrounded by line-emitting clouds. These results can be understood as due the interaction between the jet and the surrounding medium. The outflowing plasma is sweeping and heating the interstellar gas causing the line-emission to be highly enhanced along the edges of the radio jet. It appears that the morphology of the Narrow Line Region of NGC 1068 is dominated by the presence of a radio outflow, as already revealed by HST observations of several Seyfert galaxies with extended radio emission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号