首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper the solar neutron and white-light flare is studied on the basis of radioastronomical observations. It is shown that the 3 June, 1982 flare had an impulsive character. A strong shock wave (M A 2.9) was observed unusually soon after the impulsive phase of the flare. The radio spectrum of this event shows that the primary acceleration process probably occurred in the region with an electron density of n e = 4.4 × 1015 m–3. The pulsations of the type IV radio burst, observed 15 min after the mass ejection process, manifest the reconnection process in the post-flare stage.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

2.
Until recently, most of the information on particle acceleration processes in solar flares has been obtained from hard X-ray and cm-microwave observations. As a rule they provide information on electrons with energies below 300 keV. During recent years it became possible to measure the gamma-ray and millimeter radio emission with improved sensitivities. These spectral ranges carry information on much higher energy electrons. We studied the temporal and spectral behaviour of the radio burst emission at centimeter-millimeter wavelengths (8–50 GHz) by using the data from the patrol instruments of IAP (Bern University). We have analyzed more than 20 impulsive and long duration radio bursts (of 10 s to several 100 s duration).The main finding of the data analysis is the presence of spectral flattening throughout the bursts, which occurs always during the decay phase of flux peaks, at frequencies well above the spectral peak frequency and independently of burst duration. Furthermore, for some of the bursts, the flux maxima at higher frequencies are delayed. These findings can serve as evidence of the hardening of the electron spectrum at energies above some hundreds of keV during the decay phase of cm–mm flux peaks. As a most likely reason for such a hardening we consider Coulomb collisions of energetic electrons continuously injected and trapped in a flaring loop.  相似文献   

3.
Observations of impulsive solar flare X-rays 10 keV by the OGO-5 satellite and the measurements of energetic solar electrons made with the Explorer-35 and Explorer-41 (IMP-5) satellites during the period March 1968–September 1969 have been analyzed in order to determine the ion density in the X-ray source region as well as the location of the electron acceleration region in the solar atmosphere. If we assume that the efficiency of escape of the accelerated electrons into interplanetary space is 10–3, the observations are found to be consistent with the following interpretation: (i) the ion density in the X-ray source region varies from event to event and lies between 109 and 1011 ions cm–3 for those events in which the impulsive X-ray emission could be detected; (ii) for those events in which no impulsive emission was detected above threshold, the ion density in the X-ray source was < 109 ions cm–3; (iii) at least in some small solar flares the region where the electrons are accelerated during the flash phase is located in the lower corona.  相似文献   

4.
Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967–1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than 1021 maxwells flares will occur and for flux of 1023 maxwells the sum of the H flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.This work was supported in part by NASA Contract No. NAS2-7868 and in part by Company funds of The Aerospace Corporation.  相似文献   

5.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

6.
Analyzing 205 radio bursts observed by the Ondejov radiospectrograph in the 1–4 GHz frequency range during 1992 and 1993, we found 6 examples of type II-like radio bursts coinciding with impulsive phases of solar flares. These bursts were interpreted as radio manifestations of MHD (shock) waves generated during impulsive phases of flares in the vicinity of the transition region. Assuming a magnetic-field perturbation origin of these waves, we studied pinch processes in the current sheet near the transition region. In the 2-D MHD numerical model of this current sheet we demonstrated that 2-D pinch processes induced by radiative losses can trigger the impulsive phase of some flares and so generate the observed high-frequency type II-like radio bursts.  相似文献   

7.
K. Kai 《Solar physics》1986,104(1):235-241
In attempting to explain observed hard X-ray and microwave flux from solar flares by a single population of energetic electrons, one has met a serious discrepancy of the order of 103–105 between the calculated and observed microwave flux. In this paper it is shown that this discrepancy can be removed for impulsive flares by the assumption of a precipitation model for both X-ray and microwave sources and that the magnetic field of 500–1000 G is required in the microwave emitting region. The precipitation model is consistent with the rapid time variation exhibited in both hard X-rays and microwaves.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

8.
The results of 21/2 yr (July 1967–December 1969) monitoring of solar radio bursts at 19 GHz ( = 1.58 cm) at the Radio and Space Research Station, Slough, are presented. Observations at this frequency are important in helping to define the form of the microwave spectrum of solar bursts since many of the more intense bursts have their spectral peak in the frequency region above 10 GHz. Fifteen bursts with peak flux increases exceeding 1000 × 10–22 Wm–2 Hz–1 were observed during this period.  相似文献   

9.
Several hundred radio bursts in the decimetric wavelength range (300–1000 MHz) have been compared with simultaneous soft and hard X-ray emission. Long lasting (type IV) radio events have been excluded. The association of decimetric emission with hard X-rays has been found to be surprisingly high (48%). The association rate increases with bandwidth, duration, number of structural elements, and maximum frequency. Type III-like bursts are observed up to the upper limit of the observed band. This demonstrates that the corona is transparent up to densities of about 1010 cm–3, contrary to previous assumptions. This can only be explained in an inhomogeneous corona with the radio source being located in a dense structure. The short decimetric bursts generally occur during the impulsive phase, i.e. simultaneously with hard X-rays. The times of maximum flux are well correlated (within 2 s). The HXR emission lasts 4 times longer then the radio emission in the average. This work finds a close relationship between decimetric and HXR emission with sufficient statistics offering additional information on the flare process.  相似文献   

10.
The purpose of the present communication is to identify the short-term (few tens of months) periodicities of several solar indices (sunspot number, Caii area and K index, Lyman , 2800 MHz radio emission, coronal green-line index, solar magnetic field). The procedure used was: from the 3-month running means (3m) the 37-month running means (37m) were subtracted, and the factor (3m – 37m) was examined for several parameters. For solar indices, considerable fluctuations were seen during the ± 4 years around sunspot maxima of cycles 18–23, and virtually no fluctuations were seen in the ± 2 years around sunspot minima. The spacings between successive peaks were irregular but common for various solar indices. Assuming that there are stationary periodicities, a spectral analysis was carried out which indicated periodicities of months: 5.1–5.7, 6.2–7.0, 7.6–7.9, 8.9–9.6, 10.4–12.0, 12.8–13.4, 14.5–17.5, 22–25, 28 (QBO), 31–36 (QBO), 41–47 (QTO). The periodicities of 1.3 year (15.6 months) and 1.7 years (20.4 months) often mentioned in the literature were seen neither often nor prominently. Other periodicities occurred more often and more prominently. For the open magnetic flux estimated by Wang, Lean, and Sheeley (2000) and Wang and Sheeley (2002), it was noticed that the variations were radically different at different solar latitudes. The open flux for < 45 solar latitudes had variations very similar (parallel) to the sunspot cycle, while open flux for > 45 solar latitudes had variations anti-parallel to the sunspot cycle. The open fluxes, interplanetary magnetic field and cosmic rays, all showed periodicities similar to those of solar indices. Many peaks (but not all) matched, indicating that the open flux for < 45 solar latitudes was at least partially an adequate carrier of the solar characteristics to the interplanetary space and thence for galactic cosmic ray modulation.  相似文献   

11.
S. R. Kane 《Solar physics》1972,27(1):174-181
Observations of impulsive solar flare X-rays 10 keV made with the OGO-5 satellite are compared with ground based measurements of type III solar radio bursts in 10–580 MHz range. It is shown that the times of maxima of these two emissions, when detectable, agree within 18 s. This maximum time difference is comparable to that between the maxima of the impulsive X-ray and impulsive microwave bursts. In view of the various observational uncertainties, it is argued that the observations are consistent with the impulsive X-ray, impulsive microwave, and type III radio bursts being essentially simultaneous. The observations are also consistent with 10–100 keV electron streams being responsible for the type III emission. It is estimated that the total number of electrons 22 keV required to produce a type III burst is 1034. The observations indicate that the non-thermal electron groups responsible for the impulsive X-ray, impulsive microwave, and type III radio bursts are accelerated simultaneously in essentially the same region of the solar atmosphere.  相似文献   

12.
Silva  Adriana V. R.  Gary  Dale E.  White  Stephen M.  Lin  R. P.  de Pater  Imke 《Solar physics》1997,175(1):157-173
We present here the first images of impulsive millimeter emission of a flare. The flare on 1994 August 18 was simultaneously observed at millimeter (86 GHz), microwave (1-18 GHz), and soft and hard X-ray wavelengths. Images of millimeter, soft and hard X-ray emission show the same compact ( 8) source. Both the impulsive and the gradual phases are studied in order to determine the emission mechanisms. During the impulsive phase, the radio spectrum was obtained by combining the millimeter with simultaneous microwave emission. Fitting the nonthermal radio spectra as gyrosynchrotron radiation from a homogeneous source model with constant magnetic field yields the physical properties of the flaring source, that is, total number of electrons, power-law index of the electron energy distribution, and the nonthermal source size. These results are compared to those obtained from the hard X-ray spectra. The energy distribution of the energetic electrons inferred from the hard X-ray and radio spectra is found to follow a double power-law with slope 6–8 below 50 keV and 3–4 above those energies. The temporal evolution of the electron energy spectrum and its implication for the acceleration mechanism are discussed. Comparison of millimeter and soft X-ray emissions during the gradual phase implies that the millimeter emission is free-free radiation from the same hot soft X-ray emitting plasma, and further suggests that the flare source contains multiple temperatures.  相似文献   

13.
Peak flux spectra of solar radio bursts in a wide frequency band have been statistically determined for different morphological types of bursts, for various ranges of magnetic field of the burst-associated sunspots and also for the bursts occurring in the central and limb region of the solar disk. Important results obtained are: (i) The generalised spectra have two peaks, one near to meter-wave and the other in the centimeter-wave region, the former peak being more pronounced than the latter; (ii) identical spectral shape is observed for the great and impulsive types and also for GRF and PBI types of bursts; (iii) the radio emission intensity is relatively higher in the central part than that in the limb part of the solar disk for frequencies 1–10 GHz, while the reverse is true for frequencies 0.245–1 GHz and 10–35 GHz; (iv) the optical depth of the absorbing layer above the source of a burst is found to be the same for meter to centimeter-wavelength bursts, implying that the radio sources in this wide band have uniform characteristics with respect to optical thickness; (v) in case of simultaneous emission in the dekameter to X-ray band, most of the decimetric bursts are seen to be very prompt and coincident with the associated flare's starting time. The interpretations of the obtained spectra give an insight into the possible generation mechanisms, pointing to the location of the source region in the solar atmosphere.  相似文献   

14.
Solar maps at 212 and 405 GHz obtained by the Solar Submillimetric Telescope (SST) show regions of enhanced brightness temperature, which coincide with the location of active regions. A statistical study of the radio emission from these active regions was performed for the first time at such high frequencies during 23 days on June and July 2002, when the atmospheric opacity was low. The brightest regions on the maps were chosen for this study, where the brightness excess observed varies from 3 to 20% above quiet Sun levels (i.e., 200–1000 K) at both wavelengths. Sizes of the regions of enhanced emission calculated at half the maximum value were estimated to be between 2′ and 7′. These sizes agree with observed sizes of active regions at other wavelengths such as Hα and ultraviolet. An important result is that the flux density spectra of all sources increase toward submillimeter frequencies, yielding flux density spectral index with an average value of 2.0. The flux density of the active region sources were complemented with that from maps at 17 and 34 GHz from the Nobeyama Radio Heliograph. The resulting spectra at all four frequencies were fit considering the flux density to be due to thermal bremsstrahlung from the active region. In the calculations, the source radius was assumed to be the mean of the measured values at 212 and 405 K. The effective temperatures of the radio emitting source, assumed homogeneous, obtained from this fit were 0.6–2.9 × 104 K, for source diameters of 2′–7′.  相似文献   

15.
Yurchyshyn  Vasyl B.  Wang  Haimin 《Solar physics》2001,202(2):309-318
In this paper we study the evolution of magnetic fields of a 1F/2.4C solar flare and following magnetic flux cancellation. The data are Big Bear Solar Observatory and SOHO/MDI observations of active region NOAA 8375. The active region produced a multitude of subflares, many of them being clustered along the moat boundary in the area with mixed polarity magnetic fields. The study indicates a possible connection between the flare and the flux cancellation. The cancellation rate, defined from the data, was found to be 3×1019 Mx h–1. We observed strong upward directed plasma flows at the cancellation site. Suggesting that the cancellation is a result of reconnection process, we also found a reconnection rate of 0.5 km s–1, which is a significant fraction of Alfvén speed. The reconnection rate indicates a regime of fast photospheric reconnection happening during the cancellation.  相似文献   

16.
A relative complete set of He I 10830 Å profiles and their coincident slit-jaw Hα images of the large limb flare (2N/X20) of 16 August 1989 were observed by the solar spectrograph at Purple Mountain Observatory. In addition to the unusually broadened spectral profiles observed in the impulsive phase, more than half of the observed He I 10830 Å profiles are characterized by central reversals, which were detected not only in the impulsive phase but also in the late decaying phase. The central-reversed profiles may exist at different heights, ranging from the solar limb to (3–4) × 104 km above. The absorption varies with time and position, with a typical lifetime and size of several minutes and 5–6 arc sec, respectively. Depths of the absorption profiles also change clearly. The absorptions are usually deeper at the loop footpoint near the solar limb and shallower at loop-top. However, the most unusual feature is that all the line-center wavelengths of them show no shift relative to that of the quiet chromosphere near the limb, implying the apparent velocities are zero while the associated emission profiles have different apparent velocities. Theoretical simulations demonstrate that the Doppler widths of the absorptions are in the range of (0.35–0.5)Å and increase with height, and the source functions are (0.11–0.3) times the disk center intensity. However, the absorptions have a relative large range of optical thickness (0.1–1.3) in the I 3 component of the He I 10830 Å triplet. We have not observed such absorption in other limb flares, including the SB/X2.9 flare of 17 August 1989 that occurred in the same active region as the studied one (NOAA 5629). Our studies show that the absorption could not result from he scattering by the telluric atmosphere or from normal chromospheric absorption. This unique phenomenon may be related to extra intense X-ray flux and caused by diffuse and non uniform materials dissociated from the flare instead of self-absorption of the flare.  相似文献   

17.
Jianqi You  Hui Li  Eijiro Hiei 《Solar physics》2004,223(1-2):169-180
A relative complete set of He I 10830 Å profiles and their coincident slit-jaw Hα images of the large limb flare (2N/X20) of 16 August 1989 were observed by the solar spectrograph at Purple Mountain Observatory. In addition to the unusually broadened spectral profiles observed in the impulsive phase, more than half of the observed He I 10830 Å profiles are characterized by central reversals, which were detected not only in the impulsive phase but also in the late decaying phase. The central-reversed profiles may exist at different heights, ranging from the solar limb to (3–4) × 104 km above. The absorption varies with time and position, with a typical lifetime and size of several minutes and 5–6 arc sec, respectively. Depths of the absorption profiles also change clearly. The absorptions are usually deeper at the loop footpoint near the solar limb and shallower at loop-top. However, the most unusual feature is that all the line-center wavelengths of them show no shift relative to that of the quiet chromosphere near the limb, implying the apparent velocities are zero while the associated emission profiles have different apparent velocities. Theoretical simulations demonstrate that the Doppler widths of the absorptions are in the range of (0.35–0.5)Å and increase with height, and the source functions are (0.11–0.3) times the disk center intensity. However, the absorptions have a relative large range of optical thickness (0.1–1.3) in the I 3 component of the He I 10830 Å triplet. We have not observed such absorption in other limb flares, including the SB/X2.9 flare of 17 August 1989 that occurred in the same active region as the studied one (NOAA 5629). Our studies show that the absorption could not result from he scattering by the telluric atmosphere or from normal chromospheric absorption. This unique phenomenon may be related to extra intense X-ray flux and caused by diffuse and non uniform materials dissociated from the flare instead of self-absorption of the flare.  相似文献   

18.
A study has been made of the relation of 19 GHz( = 1.58 cm) solar radio bursts to solar proton emission, with particular reference to the usefulness of relatively long duration bursts with intensities exceeding 50% of the quiet Sun flux (or exceeding 350 × 10–22 W m–2 Hz–1) as indicators of the occurrence of proton events during the four years from 1966–69. 76 to 88% of such bursts are directly associated with solar protons and 60 to 85% of the moderate to large proton events in the four year period could have been predicted from these bursts. The complete microwave spectra of the proton events have also been studied, and have been used to extend the results obtained at 19 GHz to other frequencies, particularly in the 5–20 GHz band. The widely used frequency of 2.8 GHz is not the optimum frequency for this purpose since proton events have a minimum of emission in this region. Most of the radio energy of proton events is at frequencies above 10 GHz. The radio spectra of proton events tend to peak at higher frequencies than most non-proton events, the overall range being 5 to 70 GHz, with a median of 10–12 GHz and a mean of 17 GHz.On leave from the Radio and Space Research Station, Slough, England, as 1969–1970 National Research Council-National Academy of Sciences Senior Post-Doctoral Research Associate at AFCRL.  相似文献   

19.
Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626–1634) and near solar maximum (CR 1668–1678). Together with previous models of open magnetic structures during the declining phase (CR 1601–1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 Å spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 Å spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab.  相似文献   

20.
Sudden phase anomalies (SPA's) observed in the phase of GBR 16 kHz VLF signals during the years 1977 to 1983 have been analysed in the light of their associated solar X-ray fluxes in the 0.5–4 Å and 1–8 Å bands. An attempt has been made to investigate the solar zenith angle () dependence of the integrated solar X-ray flux for producing SPA's. It is deduced from the observations for < 81° that the phase deviation increases linearly as a whole with increasing solar X-ray fluxes in these two bands. The threshold X-ray flux needed to produce a detectable SPA effect has been estimated to be 1.6 × 10–4 ergcm–2 s–1 and 1.8 × 10–3 ergcm–2 s–1 in the 0.5–4 Å and 1–8 Å bands, respectively. For both bands the average cross section for all atmospheric constituents at a height of 70 km is almost equal to the absorption cross section for the 3 Å X-ray emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号