首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Gondwana Research》2010,18(4):653-661
There is widespread interest in the Neoproterozoic period of the Earth's history (1000 to 542 Ma) because of unprecedented δ13C fluctuations to <  10‰ PDB through thick (> 1000 m) succession of stratigraphically complex sedimentary rocks deposited during tens of millions of years. In contrast, Phanerozoic large negative C-isotope excursions have been interpreted as the result of diagenetic fluid mixing during carbonate stabilization and burial and are less enigmatic due to the excellent biostratigraphic control on their timing and duration.The Ediacaran Nafun Group of Oman (part of the Huqf Supergroup spanning the Cryogenian–Early Cambrian) contains a large δ13C negative excursion (the Shuram excursion) reaching values as negative as − 12‰ at the base of the Shuram Formation. A steady recovery to positive values occurs over the entire Shuram and half through the overlying Buah Formation, suggesting a duration on the order of tens of My. Based on trace metal, chemostratigraphic and sedimentological analyses, the carbon isotope record obtained from the Buah Formation of northern Oman indicates a systematic and reproducible shift of δ13C values from − 6‰ to + 1‰ in 1 — a demonstrably diagenetic altered carbonate-cemented siliciclastic facies, and 2 — a least diagenetically altered stromatolitic facies. The identical reproducible isotopic pattern in these time-equivalent sections combined to the presence of exceptionally preserved δ18O values around − 2 to + 1‰ associated with the most negative δ13C values rules out isotopic resetting by diagenetic fluids as a mechanism to explain these values.It is concluded that it is possible to retain depositional δ13C values in demonstrably diagenetically altered carbonates. This raises the issue of the ability to recognize diagenetic alteration of C-isotopic values in Neoproterozoic rocks where a robust time frame to support reproducibility is not available. The results of this study provide strong support to a non diagenetic origin of the negative Shuram C-isotope excursion, believed to be the most profound (in terms of amplitude and duration) in the Earth's history.  相似文献   

2.
《Precambrian Research》2006,144(3-4):167-198
The Huqf Supergroup of Oman contains an excellently exposed succession from the presumed Marinoan-age Fiq glaciation (ca. 635 Ma) to the Precambrian–Cambrian boundary (542 Ma). Within this time interval, two major siliciclastic-to-carbonate cycles are present, starting with the transgression of basin margins following the deposition of the glacigenic, probably rift-related Fiq Member. The dominantly siliciclastic portion of the first cycle is termed the Masirah Bay Formation. In the Huqf region of east-central Oman, two quartz-arenitic sandstone bodies crop out, below the transition into the overlying Khufai Formation carbonates. In the Jabal Akhdar of northern Oman, only deep marine shales and siltstones are found.The Masirah Bay Formation in the Huqf area is divided into a number of members with constituent units containing distinctive facies assemblages. In Member 1, wave-rippled shoreface deposits are overlain by trough cross-stratified, coarse-grained sandstones deposited in proximal tidal sandsheets or estuarine tidal shoals. Member 2 represents essentially a repeat of this coarsening- and shallowing-up trend via a basin-wide flooding event. A second major flooding surface is overlain by the lower shoreface to offshore sedimentary rocks of Member 3, which pass gradationally upwards into the distal carbonate ramp of the Khufai Formation. The two major progradational cycles can be identified in nearby subsurface well penetrations such as Masirah-1 (SMP-1).The tidal sandstones of the Masirah Bay Formation were deposited as regressive-transgressive pulses in a longer term transgressive stratigraphic trend associated with both the demise of continental glaciation and the end of active extensional tectonics. As basin margins were flooded, compositionally and texturally mature but coarse-grained quartzose sand was swept by currents into tidal sandsheets and estuary-fills along a broad littoral margin situated in the eastern fringe of the study area. The development of meso-macrotidal conditions over extensive sandy shelves and coastlines appears to be a common but unexplained feature of the Ediacaran and Early Cambrian interval.  相似文献   

3.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

4.
The carbonatic sequence of the Calabozo Formation (Lower Callovian) developed in southwestern Gondwana, within the northern area of the Neuquén basin, and is widespread in thin isolated outcrops in southwestern Mendoza province, Argentina. This paper describes the facies, microfacies and geochemical-isotopic analysis carried out in five studied localities, which allowed to define the paleoenvironmental conditions of a homoclinal shallow ramp model, highly influenced by sea level fluctuations, where outer, mid and inner ramp subenvironments were identified. The outer ramp subenvironment was only recognized in the south of the depocenter and is characterized by proximal outer ramp facies with shale levels and interbedded mudstone and packstone layers. The mid ramp subenvironment is formed by low energy facies (wackestone) affected by storms (packstones, grainstones and floatstones). The inner ramp subenvironment is the most predominant and is characterized by tidal flat facies (wackestones, packstones and grainstones) over which a complex of shoals (grainstones and packstones) dissected by tidal channels (packstone, grainstones and floatstones) developed. In the north area, protected environment facies were recorded (bioturbated wackestones and packstones). The vertical distribution of facies indicates that the paleoenvironmental evolution of the Calabozo Formation results from a highstand stage in the depocenter, culminating in a supratidal environment, with stromatolitic levels interbedded with anhydrite originated under restricted water circulation conditions due to a progressive isolation of the basin. δ13C and δ18O values of the carbonates of the Calabozo Formation suggest an isotopic signature influenced by local palaeoenvironmental parameters and diagenetic overprints. The δ13C and δ18O oscillations between the carbonates of the different studied sections are related with lateral facies variations within the carbonate ramp accompanied with dissimilar reactivities in relation to diagenetic fluids. The δ18O values of all sections exhibit a rather broad scatter which may be attributed to diagenesis and recrystallisation while the carbon isotopic composition has been less affected by those processes. Carbon isotope system has best retained the primary isotopic signal and δ13C values (0–3.9‰) are within the Callovian isotope range. The 87Sr/86Sr ratios of the bulk carbonates of El Plomo creek, La Vaina creek and Potimalal River sections are in agreement with the Callovian seawater Sr-isotope curve.  相似文献   

5.
This work provides new insights to assess the factors controlling carbonate deposition in the siliciclastic fluvial systems of rift basins. Sedimentological and stable‐isotope data of microbialites and associated carbonate facies, along with regional geological information, are shown to reveal the influence of climate and tectonics on the occurrence and attributes of carbonate deposits in these settings. The Vega Formation – a 150 m thick Lower Kimmeridgian siliciclastic fluvial sequence in Asturias Province (northern Spain) – constitutes a candidate for this approach. This unit includes varied facies (stromatolites; rudstones, packstones and wackestones containing oncoids, intraclasts, charophytes and shell bioclasts; marlstones and polygenic calcareous conglomerates) that formed in a low‐gradient fluvial–lacustrine system consisting of shallow, low‐sinuosity oncoid‐bearing channels and pools within marshy areas, with sporadic coarse alluvial deposition. The sedimentological attributes indicate common erosion by channel overflow and rapid lateral changes of subenvironments caused by water‐discharge variations. The carbonate fluvial–lacustrine system developed near uplifted marine Jurassic rocks. The occurrence of the system was conditioned by normal faults (active during the deposition of the unit) that favoured: (i) springs of HCO3–Ca‐rich water from a Rhaetian–Sinemurian carbonate rock aquifer; and (ii) carbonate deposition in areas partially isolated from the adjacent siliciclastic fluvial system. The microbialite δ13C and δ18O values support deposition in a hydrologically open system, fed by ambient‐temperature meteoric water, with riparian vegetation. Three types of lamination in the stromatolites and oncoids reflect distinct morphological types of cyanobacterial communities. The textural pattern of lamination parallels δ13C and δ18O changes, suggesting short‐term cycles of precipitation and temperature. A moderately to strongly contrasted seasonal and/or pluriannual precipitation regime is inferred from the cyclic δ13C pattern of the lamination and from the discontinuous and asymmetrical growth of oncoids. Thus, the isotopic and sedimentological attributes of the carbonate deposits were linked to short‐term climate changes associated with semi‐arid conditions, consistent with the studied climatic zone.  相似文献   

6.
The Kyrpy Group of the East European platform is regarded by tradition as correlative with the Lower Riphean Burzyan Group of the Bashkirian meganticlinorium in the southern Urals. Age and correlation of the Kyrpy Group remain problematic, however, because of a limited geochronological information and controversial interpretation of paleontological materials. Data of C-and Sr-isotope chemostratigraphy contribute much to the problem solution. In the Kyrpy Group of the Kama-Belaya aulacogen, the Kaltasy Formation carbonates 1300 to 2400 m thick (boreholes 133 and 203 of the Azino-Pal’nikovo and Bedryazh areas) show 87Sr/86Sr ratios ranging around 0.7040 and narrow diapasons of δ13C values: about 0.5‰ (V-PDB) in shallow-water facies and-2.0‰ (V-PDB) in sediments of deeper origin. Despite the facies dependence of carbon isotope composition, δ13C variations not greater than ±1.0‰ are depicted in chemostratigraphic profiles of carbonate rocks characterizing separate stratigraphic intervals up to 800 m thick in the above borehole sections. Low 87Sr/86Sr ratios and almost invariant δ13C values in carbonates of the Kaltasy Formation are obviously contrasting with these parameters in the Middle and Upper Riphean deposits, being comparable with isotopic characteristics of the Lower Riphean sediments (Mesoproterozoic deposits older than 1300 Ma). Consequently, the results obtained evidence in favor of the Early Riphean age of the Kaltasy Formation and the Kyrpy Group as a whole.  相似文献   

7.
以二叠系碳同位素地层学研究为例,在有条件控制的实验模拟基础上发现:1)采集到的地质样品一般都是不同碳酸盐矿物的混合样品,这些不同碳酸盐矿物具有不同的碳氧同位素比值(δ13C和δ18O);2)自然露头和采石场剖面样品的无机碳氧稳定同位素组成会在可预见的时间内发生足以影响研究结果的淋滤交代作用;3)利用地层中碳酸盐样品的δ...  相似文献   

8.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   

9.
The Late Cenomanian–Mid Turonian succession in central Spain is composed of siliciclastic and carbonate rocks deposited in a variety of coastal and marine shelf environments (alluvial plain–estuarine, lagoon, shoreface, offshore‐hemipelagic and carbonate ramp). Three depositional sequences (third order) are recognized: the Atienza, Patones and El Molar sequences. The Patones sequence contains five fourth‐order parasequence sets, while a single parasequence set is recognized in the Atienza and El Molar sequences. Systems tracts can be recognized both in the sequences and parasequence sets. The lowstand systems tracts (only recognized for Atienza and Patones sequences) are related to erosion and sequence boundary formation. Transgressive systems tracts are related to marine transgression and shoreface retreat. The highstand systems tracts are related to shoreface extension and progradation, and to carbonate production and ramp progradation. Sequences are bounded by erosion or emergence surfaces, whose locations are supported by mineralogical analyses and suggest source area reactivation probably due to a fall in relative sea‐level. Transgressive surfaces are subordinate erosion and/or omission surfaces with a landward facies shift, interpreted as parasequence set boundaries. The co‐existence of siliciclastic and carbonate sediments and environments occurred as facies mixing or as distinct facies belts along the basin. Mixed facies of coastal areas are composed of detrital quartz and clays derived from the hinterland, and dolomite probably derived from bioclastic material. Siliciclastic flux to coastal areas is highly variable, the maximum flux postdates relative sea‐level falls. Carbonate production in these areas may be constant, but the final content is a function of changing inputs in terrigenous sediments and carbonate content diminishes through a dilution effect. Carbonate ramps were detached from the coastal system and separated by a fringe of offshore, fine‐grained muds and silts as distinct facies belts. The growth of carbonate ramp deposits was related to the highstand systems tracts of the fourth‐order parasequence sets. During the growth of these ramps, some sediment starvation occurred basinwards. Progradation and retrogradation of the different belts occur simultaneously, suggesting a sea‐level control on sedimentation. In the study area, the co‐existence of carbonate and siliciclastic facies belts depended on the superimposition of different orders of relative sea‐level cycles, and occurred mainly when the second‐order, third‐order and fourth‐order cycles showed highstand conditions.  相似文献   

10.
Sedimentological investigation of the late Paleoproterozoic (Orosirian) Vempalle Formation of the Cuddapah Basin, Dharwar craton, India, reveals three facies association that range from supratidal to deep subtidal. Sedimentary rocks of this succession are dominated by heterolithic carbonate mudstone, intraformational carbonate conglomerate, and a variety of columnar, domal, and stratiform microbialite facies. Deposition occurred in an extensional regime during development of a low-gradient ramp, where the distribution of microbialite facies is distinctly depth-partitioned. A gradual increase in synoptic relief of columnar stromatolites through the section, and the upward transition from stratiform to columnar microbialites, record a prolonged marine transgression with little or no influx of terrigenous detritus. Siliciclastic influx along the northeastern side of the shelf reflects the redistribution of topographic highs concomitant with large scale volcanic activity. Redistribution of topographic highs eventually led to progradation of peritidal facies and shutting down of the carbonate factory. Earthquake-induced ground shaking and voluminous volcanism experienced by this platform point to the reactivation of a deep-seated mantle-plume that resulted in thermal doming of the Dharwar crust prior to the onset of Cuddapah deposition. Isotopic and elemental chemistry of a selection of Vempalle Formation carbonate rocks record elevated Mn2+ and Fe2+ concentrations and depleted carbon isotope values in inner ramp lagoonal facies, relative to more open marine stromatolitic facies. Patterns of isotopic and elemental variation suggest the presence of geochemically distinct water masses—either within the water column or within substrate pore fluids—that resulted from a combination of globally low marine oxygenation and restricted oceanographic circulation in inner ramp environments. These data suggest that, even in the aftermath of Early Paleoproterozoic oxygenation, that ocean chemistry was heterogeneous and strongly affected by local basin conditions.  相似文献   

11.
New 87Sr/86Sr, δ13C, and δ18О chemostratigraphic data were obtained for carbonate rocks of the Lower Riphean Yusmastakh and the Vendian Starorechenskaya formations. The δ13С values in dolomites of the Yusmastakh Formation varies from–0.6 to–0.1‰ and in dolomites and dolomitic limestones of the Starorechenskaya Formation, from–1.2 to–0.4‰ PDB, and δ18О values, from 24.4 to 26.4‰ and from 25.3 to 27.6‰ SMOW, respectively. The Rb–Sr systematics of carbonate rocks was studied using the refined method of stepwise dissolution of samples in acetic acid, including chemical removal of up to one-third of the ground sample by preliminary acid leaching and subsequent partial dissolution of the rest of the sample. Owing to this procedure, secondary carbonate material is removed, which enables one to improve the quality of the Sr-chemostratigraphic data obtained. The initial 87Sr/86Sr ratios in carbonate rocks of the Yusmastakh (0.70468–0.70519) and Starorechenskaya (0.70832–0.70883) formations evidence the Riphean–Vendian boundary in the Precambrian sequence of the Anabar Uplift.  相似文献   

12.
The paper presents the results of study of the Sr, C, and O isotope compositions in Upper Jurassic carbonate rocks of the Baidar Valley and Demerdzhi Plateau in the Crimean Mountains represented by different facies of the carbonate platform at the northern active margin of the Tethys. The 87Sr/86Sr value in them varies from 0.70699 to 0.70728. Based on the Sr chemostratigraphic correlation, the age of massive and layered limestones in the western part of the Ai-Petri and Baidar yailas (pastures) is estimated as late Kimmeridgian–early Tithonian, whereas the age of flyschoids of the Baidar Valley are estimated as late Tithonian–early Berriasian. The nearly synchronous formation of carbonate breccias of the Baidar Valley and Demerdzhi Plateau in late Tithonian–early Berriasian is substantiated. A summary section of Upper Jurassic rocks is compiled based on the Sr chemostratigraphic data. It has been established that δ18O values in the studied carbonate sediments vary from–2.9 to 1.3‰ (V-PDB). At the same time, shallow-water sediments in the internal part and the edge of the Crimean carbonate platform are depleted in 18O (–2.9 to +0.1‰) relative to sediments on the slope and foothill (–0.5 to +1.3‰). It is demonstrated that δ13C values do not depend on the facies properties and decrease in younger carbonate sediments from 3–3.5‰ to 1–1.5‰ in line with the Late Jurassic general trend. The δ13C values obtained for the Crimean carbonate platform turned out to be 0.5–1‰ higher than the values typical of the deep-water marine setting at the western margin of the Tethys. These discrepancies are likely related to peculiarities of water circulation and high bioproductivity in marine waters of the northern Peri-Tethys.  相似文献   

13.
The South Oman Salt Basin (SOSB) is host to the world’s oldest known commercial deposits. Most of the South Oman oils have been proven to be associated with the source rocks of the Neoproterozoic to Cambrian Huqf Supergroup, but the assignment of oils to specific Huqf intervals or facies has been hampered by the geochemical similarity of the organic matter across the entire Huqf sequence, possibly as a consequence of limited change in the local palaeoenvironment and biota over the time of its deposition. This study was conducted to establish improved correlations between organic-rich rock units and reservoir fluids in the SOSB through detailed molecular and isotopic analysis of the Huqf Supergroup, with special emphasis directed towards understanding the Ara carbonate stringer play.Unusual biomarkers, tentatively identified as A-norsteranes, show distinctive patterns among carbonate stringer oils and rocks different from those observed in Nafun sediments and Ara rocks from the Athel basin. These putative A-norsteranes form the basis for new oil-source correlations in the SOSB and provide for the first time geochemical evidence of a self-charging mechanism for the carbonate stringer play. The paucity of markers specific to the Nafun Group (Shuram, Buah and Masirah Bay formations) confounds attempts to quantify their respective contributions to Huqf oil accumulations. Nafun inputs can only be determined on the basis of subtle differences between Nafun and Ara biomarker ratios. The most useful geochemical characteristics delineating Nafun Group organic matter from Ara Group intra-salt source rocks included: low relative abundance of mid-chain monomethyl alkanes (X-compounds); low relative abundance of gammacerane, 28,30-dinorhopane, 25,28,30-trinorhopane and 2-methylhopanes; low C22T/C21T and high C23T/C24T cheilanthanes ratio values. Based on these parameters, molecular evidence for major contributions of liquid hydrocarbons from Nafun Group sediments (Shuram, Buah and Masirah Bay formations) is lacking. Our results suggest that the majority of SOSB hydrocarbon accumulations originate from within the Ara group, either from the carbonate stringers or from the package of sediments that comprises the Thuleilat, Athel Silicilyte and U shale formations. Subtle aspects of the composition of some carbonate stringer and post-salt Huqf oils could suggest some degree of sourcing from the Nafun rocks but stronger evidence is needed to confirm this.  相似文献   

14.
《Gondwana Research》2001,4(3):387-394
The rocks of Marwar Supergroup in the trans-Aravalli sector in western India are presumed to span the time interval between Neoproterozoic and early Cambrian. This, predominantly unfossiliferous, marine sedimentary sequence is characterized by a lower arenaceous facies (Jodhpur Group), middle carbonate facies (Bilara Group) and upper argillaceous— arenaceous facies (Nagaur Group) rocks. The sedimentation has been essentially in a shallow basin, described either as the fore-land slope of the rising Aravalli mountains or a sag-basin which developed and evolved due to subsidence of the updomed crust during Neoproterozoic Malani magmatism that failed to open rifts. The carbon isotopic profile for the Bilara Group carbonate rocks in the lower part shows marked oscillations and broadly negative δ13C character with negative anomalies as low as <−4.3‰PDB, observed near the base of Dhanapa Formation (lower unit) and <−6.5‰PDB in the overlying Gotan Formation (middle unit). The upper part of the profile shows a gradual positive shift. The carbon isotopic signatures of the Bilara Group rocks can be correlated with the end-Neoproterozoic — early Cambrian (Vendian — Tommotian) carbon isotopic evolution curve. Extremely low δ13C values indicate the glaciation related cold climatic postulates of the end-Neoproterozoic, followed by the warmer climatic conditions as indicated by the positive shift. The carbon isotopic data for Gotan Formation carbonates, at variance with the globally observed δ13C trends for early Tertiary, do not support the recently proposed Tertiary age for the Bilara Group.  相似文献   

15.
《Gondwana Research》2013,23(3-4):1091-1101
A pronounced negative δ13C shift that can be potentially correlated with the Shuram excursion has been reported from middle Ediacaran strata in the Yangtze Gorges area of South China. Whether it represents a perturbation to the ocean carbon cycle or a record of post-depositional alteration is still open to debate. Resolving this controversy will help clarify if δ13C variations can be used for chemostratigraphic correlation of Ediacaran successions. To further understand the regional pattern of Ediacaran carbon isotopic excursions in the Yangtze platform, we carried out a detailed δ13C analysis of the Lianghong section in the western part of the Yangtze platform. The Ediacaran System at Lianghong is overlain by the Maidiping Formation yielding early Cambrian small shelly fossils and underlain by the Cryogenian Lieguliu Formation diamictite and tuffaceous siltstones. It comprises the Guanyinya and Hongchunping formations, which have been traditionally correlated with the Doushantuo and Dengying formations, respectively, in the Yangtze Gorges area. Two negative δ13C excursions occur in the Lianghong section. The lower one at the uppermost Guanyinya Formation, with a nadir at − 8.6‰, may be correlated with the pronounced negative δ13C shift (EN3) in the uppermost Doushantuo Formation in the Yangtze Gorges area and possibly with the well known Shuram event in Oman. The upper negative δ13C excursion occurs in the upper Hongchunping Formation and may be correlated with negative excursions (EN4) near the Ediacaran/Cambrian boundary. Other negative δ13C excursions (e.g., EN1 and EN2) are not expressed in the Lianghong section because the lower Guanyinya Formation is dominated by siliciclastic rocks. Combined with previously published Ediacaran δ13C profiles, our results indicate that the EN3 excursion (likely a Shuram equivalent) may occur widely in South China and can be a useful chemostratigraphic feature for regional and global stratigraphic correlation.  相似文献   

16.
The Lockhart Formation from a major carbonate unit of the Paleocene Charrat Group in Upper Indus Basin, Pakistan represents a larger foraminiferal–algal build up deposited in a cyclic sequence of the carbonate ramp. The foraminiferal–algal assemblages of the Lockhart Formation are correlated here to larger foraminiferal biostratigraphic zone, i.e. Shallow Benthic Zone (SBZ3) of the Thanetian Age. Inner ramp lagoon, shoal and fore shoal open marine are three main facies associations represented by wackstone and packstone foraminiferal–algal deposits. These facies are present in a cyclic order and displayed a retrograding carbonate ramp indicating the Thanetian transgressive deposits associated with eustatic sea level rise. The correlation of the microfacies of the Lockhart Formation (Upper Indus Basin) and facies of the Dungan Formation (Lower Indus Basin) provide detailed configuration of the depositional setting of the Indus Basin during the time interval represented by the Thanetian Zone SBZ3.  相似文献   

17.
晚三叠世龙门山前陆盆地分布于扬子克拉通西缘,属于印支期造山楔构造负载驱动的挠曲型前渊凹陷.其中卡尼期马鞍塘组是分布于底部不整合面之上的第一套地层单元,记录了前缘隆起边缘碳酸盐缓坡和海绵礁的构建和淹没过程.据钻孔揭示马鞍塘组的最大厚度超过250m,显示为西北厚东南薄的楔形结构,从北西向南东依次分布了深水盆地、碳酸盐缓坡和海绵礁和浅水滨岸带等沉积物类型.其中碳酸盐缓坡和海绵礁分布于前陆盆地的远端,呈面向西的条带状展布,其走向线与龙门山冲断带的走向大致平行.碳酸盐缓坡和海绵礁的厚度介于30~100m之间,由北西向南东变薄.在垂向上,马鞍塘组由3部分构成,下部为鲕粒滩和生物碎屑滩,中部为海绵礁,上部为黑色页岩,显示为向上变细、变深的沉积序列.在Li et al.(2003)盆地模拟的基础上,本次对卡尼期前陆盆地的沉降速率、沉积速率、海绵礁生长速率、相对海平面上升速率进行了定量计算,其中沉降速率为0.10mm·a-1、沉积速率为0.04mm·a-1、海绵礁生长速率为0.03mm·a-1、相对海平面上升速率介于0.01mm·a-1~0.05mm · a-1之间.研究结果表明:在卡尼期早期,相对海平面处于初始上升阶段,相对海平面上升速率较小,盆地处于欠补偿状态,沉积了碳酸盐缓坡型鲕粒滩和生物碎屑滩;在卡尼期中期,相对海平面上升速率等于海绵礁生长速率,海绵礁持续保持垂直向上的生长状态,形成了高度达100余米的塔礁;在卡尼期晚期,相对海平面上升速率大于海绵礁生长速率,礁顶的水深逐步变大,导致礁体被淹溺致死,从而在卡尼期形成了鲕粒灰岩滩-生物碎屑滩-海绵礁灰岩-页岩的向上变细、变深的沉积序列,显示了前陆盆地早期碳酸盐缓坡和海绵礁生长并被淹没的特有模式.本次研究成果表明龙门山前陆盆地的底部不整合面和碳酸盐缓坡、海绵礁的淹没过程是扬子板块西缘印支期造山楔逆冲构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和造山楔构造负载向扬子板块的推进过程.  相似文献   

18.
The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China, documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata, exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ^13Corg = -35.0‰) from the uppermost Nantuo Formation are followed by an overall increase in δ^13C up-section. Carbon isotope values vary between -9.9‰ and 3.6‰ for carbonate and between -35.6‰ and -21.5‰ for organic carbon, respectively. Heavier δ^13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ^13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin, reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.  相似文献   

19.
ABSTRACT The middle Miocene sedimentary fill of the Calatayud Basin in north‐eastern Spain consists of proximal to distal alluvial fan‐floodplain and shallow lacustrine deposits. Four main facies groups characteristic of different sedimentary environments are recognized: (1) proximal and medial alluvial fan facies that comprise clast‐supported gravel and subordinate sandstone and mudstone, the latter exhibiting incipient pedogenic features; (2) distal alluvial fan facies, formed mainly of massive mudstone, carbonate‐rich palaeosols and local carbonate pond deposits; (3) lake margin facies, which show two distinct lithofacies associations depending on their distribution relative to the alluvial fan system, i.e. front (lithofacies A), comprising massive siliciclastic mudstone and tabular carbonates, or lateral (lithofacies B) showing laminated and/or massive siliciclastic mudstone alternating with tabular and/or laminated carbonate beds; and (4) mudflat–shallow lake facies showing a remarkable cyclical alternation of green‐grey and/or red siliciclastic mudstone units and white dolomitic carbonate beds. The cyclic mudflat–shallow lake succession, as exposed in the Orera composite section (OCS), is dominantly composed of small‐scale mudstone–carbonate/dolomite cycles. The mudstone intervals of the sedimentary cycles are interpreted as a result of sedimentation from suspension by distal sheet floods, the deposits evolving either under subaerial exposure or water‐saturated conditions, depending on their location on the lacustrine mudflat and on climate. The dolomite intervals accumulated during lake‐level highstands with Mg‐rich waters becoming increasingly concentrated. Lowstand to highstand lake‐level changes indicated by the mudstone/dolomite units of the small‐scale cycles reflect a climate control (from dry to wet conditions) on the sedimentation in the area. The spatial distribution of the different lithofacies implies that deposition of the small‐scale cycles took place in a low‐gradient, shallow lake basin located in an interfan zone. The development of the basin was constrained by gradual alluvial fan aggradation. Additional support for the palaeoenvironmental interpretation is derived from the isotopic compositions of carbonates from the various lithofacies that show a wide range of δ18O and δ13C values varying from ?7·9 to 3·0‰ PDB and from ?9·2 to ?1·7‰ PDB respectively. More negative δ18O and δ13C values are from carbonate‐rich palaeosols and lake‐margin carbonates, which extended in front of the alluvial fan systems, whereas more positive values correspond to dolomite beds deposited in the shallow lacustrine environment. The results show a clear trend of δ18O enrichment in the carbonates from lake margin to the centre of the shallow lake basin, thereby also demonstrating that the lake evolved under hydrologically closed conditions.  相似文献   

20.
The age of the Katera Group, which occupies a large area in the western North Muya Range and occurs 100–150 km east of the Uakit Group, is a debatable issue. Based on geological correlations with reference sections of the Baikal Group and Patom Complex, the Katera and Uakit groups were previously considered nearly coeval units and assigned to Late Precambrian (Khomentovskii and Postnikov, 2002; Salop, 1964). This was supported partly by the Sm–Nd model datings (Rytsk et al., 2007, 2009, 2011). Finds of the Paleozoic flora substantiated the revision of age of the Uakit Group and its assignment to the Late Devonian–Early Carboniferous (Gordienko et al., 2010; Minina, 2003, 2012, 2014). We have established that Sr and C isotopic compositions in carbonates of these groups differ drastically, as suggested by their different ages. Sediments of the Nyandoni Formation (Katera Group), which contains carbonates characterized by minimum values of 87Sr/86Sr = 0.7056 and maximum values of δ13C = 4.9‰, were accumulated in the first half of Late Riphean (800–850 Ma ago), whereas the overlying Barguzin Formation (87Sr/86Srmin = 0.70715, δ13Cmax= 10.5‰) was deposited at the end of Late Riphean (700–750 Ma). Judging from the isotope data, the Nerunda Formation (Uakit Group), which contains carbonates with characteristics matching the most rigorous criteria of fitness for the chemostratigraphic correlation (Sr content up to 4390 μg/g, Mn/Sr < 0.1, δ18O = 23.0 ± 1.8‰), was deposited at the end of Vendian ~550–540 Ma ago). The sequence includes thick typical carbonate horizons with very contrast carbon isotopic compositions: the lower unit has anomalous high δ13C values (5.8 ± 1.0‰); the upper unit, by anomalous low δ13C values (–5.2 ± 0.5‰]). Their Sr isotopic composition is relatively homogeneous (87Sr/86Sr = 0.7084 ± 0.0001) that is typical of the Late Vendian ocean. The S isotopic composition of pyrites from the Nyandoni Formation (Katera Group) (δ34S = 14.1 ± 6.8‰) and pyrites from the Mukhtunny Formation (Uakit Group) (δ34S = 0.7 ± 1.4‰) does not contradict the C and Sr isotopic stratigraphic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号