首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Marble, calc-silicate rock, quartzite and mica schist of Precambrian age in the ‘main Raialo syncline’ in the Udaipur district of central Rajasthan, India, have been affected by folding of four main generations (F1–F4), the first two of which are seen in the scale of map to microsection. The very tight to isoclinal F1 folds with long limbs and thickened hinges are generally reclined or inclined, and plunge gently castward or westward where least reoriented. The axial planes of the F1 folds have been involved in upright warps on east-west axes (F1′), nearly coaxial with the F1 folds, in some sectors. These folds have been overprinted by upright F2 folding of varying tightness with the axial planes striking north to northeast, resulting in interference patterns of different types in all scales. A penetrative axial plane foliation related to F1 folding and a crenulation cleavage parallel to the F2 axial pianes are seen in the micaceous rocks. Two sets of conjugate folds and kink bands of smail scale have been superimposed on the F1–F2 folds in thinly foliated rocks. The first of these sets (F3) has its conjugate axial planes dipping gently northeast and southwest, whereas the paired axial planes of the later set (F4) are vertical with north-northwest and east-west strikes.  相似文献   

2.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

3.
Anisotropy of magnetic susceptibility (AMS) in micaceous quartzites with mean susceptibility (K m) >50 × 10−6 SI units is known to be on account of the orientation distribution of the para/ferromagnetic minerals (e.g. micas, magnetite), which comprise the minor phase in the rocks. However, the strain in such deformed micaceous quartzites is dominantly accommodated by the quartz grains, which are the major phase in them. The objective of this paper is to explore the extent to which AMS data from micaceous quartzites provide information about the shape of the strain ellipsoid. AMS analysis of 3 quartzite blocks is performed, and the shape of the AMS ellipsoid is recorded to be oblate. From AMS data, the three principal planes of the AMS ellipsoid are identified in each block and thin sections are prepared along them. Quartz grain shape (aspect ratio, R q), intensity of quartz and mica shape preferred orientation (κq and κmi, respectively) and 2D strain (E) recorded by quartz are measured in each section. R q, κq, κmi and E are all noted to be minimum in the section parallel to the magnetic foliation plane as compared to the other two sections. This indicates that the quartz grains have oblate shapes in 3D and accommodated flattening strain, which is similar to the shape of the AMS ellipsoid. The role of mica in causing Zener drag and pinning of quartz grain boundaries is discussed. It is concluded that during progressive deformation, migration of pinned grain boundaries is inhibited. This causes enhanced recrystallization at the grain boundaries adjacent to the pinned ones, thus guiding the shape modification of quartz grains. A strong correlation is demonstrated between κq and κmi as well as κmi and E. It is inferred that fabric evolution of quartz was controlled by mica. Hence, the shape of the AMS ellipsoid, which is on account of mica, provides information about shape of the strain ellipsoid.  相似文献   

4.
The supracrustal enclave within the Peninsular Gneiss in the Honakere arm of the Chitradurga-Karighatta belt comprises tremolite-chlorite schists within which occur two bands of quartzite coalescing east of Jakkanahalli(12°39′N; 76°41′E), with an amphibolite band in the core. Very tight to isoclinal mesoscopic folds on compositional bands cut across in the hinge zones by an axial planar schistosity, and the nearly orthogonal relation between compositional bands and this schistosity at the termination of the tremolite-chlorite schist band near Javanahalli, points to the presence of a hinge of a large-scale, isoclinal early fold (F1). That the map pattern, with an NNE-plunging upright antiform and a complementary synform of macroscopic scale, traces folds 'er generation (F 2),is proved by the varying attitude of both compositional bands (S0) and axial pranar schistosity (S 1), which are effectively parallel in a major part of the area. A crenulation cleavage (S 2) has developed parallel to the axial planes of theF 2 folds at places. TheF 2 folds range usually from open to rarely isoclinal style, with theF 1 andF 2 axes nearly parallel. Evidence of type 3 fold interference is also provided by the map pattern of a quartzite band in the Borikoppalu area to the north, coupled with younging directions from current bedding andS 0 -S 1 inter-relation. Although statistically theF 1 andF 2 linear structures have the same orientation, detailed studies of outcrops and hand specimens indicate that the two may make as high an angle as 90°. Usually, in these instances, theF 1 lineations are unreliable around theF 2 axes, implying that theF 2 folding was by flexural slip. In zones with very tight to almost isoclinalF 2 folding, however, buckling attendant with flattening has caused a spread of theF 1 lineations almost in a plane. Initial divergence in orientation of theF 1 lineations due to extreme flattening duringF 1 folding has also resulted in a variation in the angle between theF 1 andF 2lineations in some instances. Upright later folding (F3) with nearly E-W strike of axial planes has led to warps on schistosity, plunge reversals of theF 1 andF 2 axes, and increase in the angle between theF 1 andF 2 lineations at some places. Large-scale mapping in the Borikoppalu sector, where the supposed Sargur rocks with ENE ‘trend’ abut against the N-‘trending’ rocks of the Dharwar Supergroup, shows a continuity of rock formations and structures across the hinge of a large-scaleF 2 fold. This observation renders the notion, that there is an angular unconformity here between the rocks of the Sargur Group and the Dharwar Supergroup, untenable.  相似文献   

5.
The lead-zinc bearing Proterozoic rocks of Zawar, Rajasthan, show classic development of small-scale structures resulting from superposed folding and ductile shearing. The most penetrative deformation structure noted in the rocks is a schistosity (S 1) axial planar to a phase of isoclinal folding (F 1). The lineations which parallel the hinges ofF 1 folds are deformed by a set of folds (F 2) having vertical or very steep axial planes. At many places a crenulation cleavage (S 2) has developed subparallel to the axial planes ofF 2 folds, particularly in the psammopelitic rocks. The plunge and trend ofF 2 folds vary widely over the area. Deformation ofF 2 folds into hook-shaped geometry and development of another set of axial planar crenulation cleavage are the main imprints of the third generation folds (F 3) in the region. In addition to these, there are at least two other sets of cleavage planes with corresponding folds in small scales. More common among these is a set of recumbent and reclined folds (F 4), developed on steeply dipping early-formed planes. Kink bands and associated sharp-hinged folds represent the other set (F 5). Two major refolded folds are recognizable in the map pattern of the Zawar mineralised belt. The larger of the two, the Main Zawar Fold (MZF), shows a broad hook-shaped geometry. The other large-scale structure is the Zawarmala fold, lying south-west of the MZF. Both the major structures show truncation of lithological units along their respective east ‘limbs’, and extreme variation in the width of formations. The MZF is primarily the result of superimposition ofF 3 onF 2.F 1 folds are relatively smaller in scale and are recognizable in the quartzite unit which responded to deformation mainly by buckle shortening. Large-scale pinching-and-swelling that appears in the outcrop pattern seems to be a pre-F2 feature. The structural evolutionary model worked out to explain the chronology of the deformational features and the large-scale out-crop pattern envisages extreme east-west shortening following formation ofF 1 structures, resulting in the formation of tight and isoclinal antiforms (F 2) with pinched-in synforms in between. These latter zones evolved into a number of ductile shear zones (DSZs). The east-west refolding of the large-scaleF 2 isoclinal antiforms seems to be the consequence of a continuous deformation and resultant migration of folds along the DSZs. The main shear zone which wraps the Zawar folds followed a curved path. Because of the penetrative nature of theF 2 movement, the early lineations which were at high angles to the later ones (as is evident in the west of Zawarmala), became subparallel to the trend ofF 2 folding over a large part of the area. Further, the virtually coaxial nature ofF 2 andF 3 folds and the refolding ofF 3 folds by a new set of N-S folds is an indication of continuous progressive deformation.  相似文献   

6.
First phase folds F1 developed in polydeformed Ajabgarh Group rocks of Proterozoic age are studied using various geometrical methods of analysis for compatibility of homogeneous strain in both class 1–3 pairs by correlatingt′ ga/α plots with existing curves for competent layers and matchingt ga/α plots with the flattening curves for the incompetent layers. F1 folds were initiated by the process of buckling but underwent [(λ21) = 0.2 to 0.7] for competent layers andR- values of 1.1 to 5 for incompetent layers. The varying flattening is also revealed by the geometry of folds. The apparent buckle shortening of folds which ranges between 49 and 67 per cent with a majority of the folds having shortening values between 50% and 55% (exclusive of layer parallel strain) and inverse thickness method strain up to 50%. Besides flattening, the fold geometry was also modified by the pressure solution. This is borne by the presence of dark seams rich in phyllosilicates and disseminated carbonaceous material offsetting limbs of buckled quartz veins in slates  相似文献   

7.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   

8.
To assess further the role of pore fluids in enhancing mass transport in deep-seated rocks, bulk diffusion coefficients (D-values) for chlorine have been measured at 1.0 GPa and 1000°C in texturally-equilibrated quartzites containing varying amounts (0.3–2.8 vol%) of H2O or a CO2–H2O mixture (X CO2=0.4). Experiments were used to monitor transport predominantly through the fluid phase by employing a chemical tracer dissolved in the fluid (chlorine) that is virtually insoluble in the rock matrix (quartzite) but is somewhat soluble in a small fraction of dispersed indicator minerals (fluorapatite). For diffusion in H2O-bearing quartzite, experiments with 1 vol.% fluid exhibit a continuous decrease in D-values with decreasing porosity whereas an abrupt drop in the diffusion coefficient is indicated by the experiments with 0.3 vol.% fluid. At a given total porosity, diffusion coefficients obtained from quartzites containing the CO2–H2O fluid range from 80x to > 3000x lower than those from H2O-bearing experiments. Bulk transport measurements were correlated with textural observations and the observed reduction in bulk D-values for quartzites containing the CO2–H2O fluid reflects the overall isolated nature of porosity in such samples. The drop in the bulk D-value for quartzites with 0.3 vol.% H2O probably arises from the elimination of interconnected porosity owing to the presence of a sufficient number of dry grain edges. Textural observations, combined with transport measurements, are consistent with the pore structure predicted by dihedral angle measurements. However, due to anisotropy in the interfacial energy of quartz, long-range fluid connectivity is dramatically reduced in quartzites with low H2O contents, despite a median dihedral angle of less than (but near) 60°. Observed variations in chlorine D-values in samples with connected and non-connected porosity are found to be consistent with previous bulk property measurements on texturally-equilibrated, fluid-bearing rocks. Results of this study, combined with prior bulk diffusion measurements for oxygen, provides a general assessment of the effect of small amounts of fluid on the enhancement of mass transport in quartzose lithologies over a range of crustal P and T. At conditions of textural equilibrium, it is expected that the fluid phase provides little or no contribution to the long-range diffusive flux of solutes in quartz-rich rocks containing small amounts of H2O or CO2–H2O mixtures.  相似文献   

9.
Progressive ductile shearing in the Phulad Shear Zone of Rajasthan, India has produced a complex history of folding, with development of planar, non-planar and refolded sheath folds. There are three generations of reclined folds, F1, F2 and F3, with a striping lineation (L1) parallel to the hinge lines of F1. The planar sheath folds of F1 have long subparallel hinge lines at the flanks joining up in hairpin curves at relatively small apices. L1 swerves harmoniously with the curving of F1 hinge line. There is a strong down-dip mineral lineation parallel to the striping lineation in most places, but intersecting it at apices of first generation sheath folds. Both the striping and the mineral lineation are deformed in U-patterns over the hinges of reclined F2 and F3. Folding of axial surfaces and hinge lines of earlier reclined folds by later folds was accompanied by very large stretching and led to the development of non-planar sheaths. The reclined folds of all the three generations were deformed by a group of subhorizontal folds. Each generation of fold initially grew with the hinge line at a very low angle with the Y-axis of bulk non-coaxial strain and was subsequently rotated towards the down-dip direction of maximum stretching. The patterns of deformed lineations indicate that the stretching along the X-direction was extremely large, much in excess of 6000 percent.  相似文献   

10.
The stratigraphic sequence of the Precambrian complex of the western Sangilen Highlands, Tannu Tuva, include schists, schistose sandstones, fine-gravel conglomerates, micaceous and ferruginous quartzites, graphitic marbles, and gneisses of the Teskhem, Mugur, Balyktyghkem, Chartyss, and Naryn formations, which grade upward into one another without break. Deposits containing Lower Cambrian fossils are also known in the area. The ferruginous quartzites, associated with the upper Mugur, mark the principal boundary in Precambrian sedimentary accumulation and indicate the change from terrigenous sediments to calcareous marine sedimentation.

The degree of metamorphism varies considerably, both horizontally and vertically. Terrigenous deposits correspond to the green-schist facies. Local variations in the metamorphism of calcareous deposits apparently result from the variability of original components. Also important is the superimposed injection metamorphism associated with Proterozoic intrusions. --Editor.  相似文献   

11.
Metamorphic rocks in the Osor complex (Guilleries massif, NE Iberian Peninsula) show the following structural and compositional features: strong differentiation into quartz-rich gneissic semipelitic and quartz-absent, mica-rich schistose bands, higher density of igneous (both basic and leucogranitic) and quartz veins in the schistose domains and strong strain partitioning in the pelitic bands. Garnet is present in both kinds of lithologies, showing also differential textural and chemical features interpreted to be dependent on bulk composition, deformation and fluid interaction histories. Textures, mineral composition and thermobarometry suggest the operation of concurrent mechanical, mass transfer and thermal phenomena such as: (1) variations in strain style, (2) fluid infiltration, (3) magmatic injection and (4) HT–LP metamorphic and metasomatic episodes. The following sequence of events is suggested: initially the cooling of syntectonic high-T basic quartz diorite sheets promoted high strain rates, low dP/dT thermobaric evolution, incipient anatexis in the pelitic bands and devolatilization through a pervasive to vein-channelized prograde fluid flow. The prograde flow enhanced an ongoing compositional tectono-metamorphic differentiation and produced metasomatism through depletion of the Osor rocks in alkalis and calcium. Later injection and cooling of peraluminous leucogranitoid sheets, preferentially along pelitic bands, increased the ratio of magmatic/metamorphic components in the fluids and strongly enriched them in alkalis producing a second metasomatic episode. During crystallization of quartz and leucogranitoid veins, the pelitic bands were strongly enriched back again in alkalis, promoting the blastesis of big crystals of post-peak muscovite and albite as well as the retrogression of garnet. The metasomatic mica-rich levels must have been the preferred locus for development of a new deformation style dominated by shear band fabrics in metapelites and related to a release of the gravitational instability originated previously due to crustal thickening. The increasing decompressional component of the retrograde PT path also suggests that this style of deformation was prevalent during, if not responsible for, a phase of exhumation of the metamorphic complex. It is suggested that similar patterns of thermomechanical and mass transfer phenomena could well be a fundamental characteristic common to all HT–LP metamorphic belts.  相似文献   

12.
S-C Mylonites   总被引:2,自引:0,他引:2  
Two types of foliations are commonly developed in mylonites and mylonitic rocks: (a) S-surfaces related to the accumulation of finite strain and (b) C-surfaces related to displacement discontinuities or zones of relatively high shear strain. There are two types of S-C mylonites. Type I S-C mylonites, described by Berthé et al., typically occur in deformed granitoids. They involve narrow zones of intense shear strain which cut across (mylonitic) foliation.Type II S-C mylonites (described here) have widespread occurrence in quartz-mica rocks involved in zones of intense non-coaxial laminar flow. The C-surfaces are defined by trails of mica ‘fish’ formed as the result of microscopic displacement discontinuities or zones of very high shear strain. The S-surfaces are defined by oblique foliations in the adjacent quartz aggregates, formed as the result of dynamic recrystallization which periodically resets the ‘finite-strain clock’. These oblique foliations are characterized by grain elongations, alignments of segments of the grain boundary enveloping surfaces, and by trails of grains with similar c-axis orientations.Examples of this aspect of foliation development in mylonitic rocks are so widespread that we suggest the creation of a broad class of S-C tectonites, and a deviation from the general tradition of purely geometric analysis of foliation and time relationships. Kinematic indicators such as those discussed here allow the recognition of kilometre-scale zones of intense non-coaxial laminar flow in crustal rocks, and unambiguous determination of the sense of shear.  相似文献   

13.
A multiple-deformation sequence is established for different types of gneisses, mafic-paleosomes and banded magnetite quartzites (BMQ) exposed within the area. In gneisses, the basin-shaped map pattern represents the type-i interference structure formed due to the overprinting of F3 folds with ENE striking axial planes on F2 folds with axial planes striking NNW. The BMQ band occurring as an enclave within the gneissic country, represents a large scale F1 fold with relatively smaller scale F2 folds developed on its limbs. Mafic-paleosomes within the streaky-charnockitic-gneisses exhibit structures formed due to the interference of more than two phases of folding (F1,Fla,F2,F3). It is shown that the deformation plan in these rocks is consistent with the generalized deformation scheme for Granite-greenstone belts. The difference in the map pattern of Granite-greenstone belts and Granulite-charnockite terrains is ascribed to the variance in Theological properties, layerthickness ratios and local displacement directions during different phases of folding. These differences apart, both the Granite-greenstone and Granulite-charnockite provinces in South India are deformed by an early isoclinal folding which is successively overprinted by folding on NNW and ENE striking axial planes.  相似文献   

14.
The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3–3.1 Ga, 2.7–2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E–W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03–2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2–1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.  相似文献   

15.
The patterns of deformed early lineations (L1) over later folds (F2) can be classified into several morphological types depending on the nature of variation of L1 F2 over the folds. The field relations indicate that the folds under consideration are neither shear folds nor parallel folds modified by flattening. The lineation patterns are therefore interpreted in terms of an empirical model of simultaneous buckling and flattening in which it is assumed that (i) the central surface of the folded layer remains a sine curve in transverse profile, (ii) the ratio of rates of buckle shortening to homogeneous strain is proportional to sin 2a, with a as the dip angle and (iii) the progressive deformation is coaxial with the Z-axis of bulk strain parallel to the planar segments of the early folds. The model gives an insight into the relative importance of different physical factors which control the development of dissimilar lineation patterns. Not all lineation patterns are explicable by this simplified model. Thus complex patterns with variable L1 F2 along the fold axis may develop by a progressive rotation of the geometrically defined fold hinge through successive material lines. The theoretical results have been applied to interpret the lineation patterns in Central Rajasthan, India. It is concluded that L1 was initially very close to the E-ESE trending subhorizontal Z-axis of bulk deformation during F2-folding and that the X-axis was subhorizontal or gently plunging with a N-NNE trend.  相似文献   

16.
The Arthur Lineament of northwestern Tasmania is a Cambrian (510 ± 10 Ma) high‐strain metamorphic belt. In the south it is composed of metasedimentary and mafic meta‐igneous lithologies of the ‘eastern’ Ahrberg Group, Bowry Formation and a high‐strain part of the Oonah Formation. Regionally, the lineament separates the Rocky Cape Group correlates and ‘western’ Ahrberg Group to its west from the relatively low‐strain parts of the Oonah Formation, and the correlated Burnie Formation, to its east. Early folding and thrusting caused emplacement of the allochthonous Bowry Formation, which is interpreted to occur as a fault‐bound slice, towards the eastern margin of the parautochthonous ‘eastern’ Ahrberg Group metasediments. The early stages of formation of the Arthur Lineament involved two folding events. The first deformation (CaD1) produced a schistose axial‐planar fabric and isoclinal folds synchronous with thrusting. The second deformation (CaD2) produced a coarser schistosity and tight to isoclinal folds. South‐plunging, north‐south stretching lineations, top to the south shear sense indicators, and south‐verging, downward‐facing folds in the Arthur Lineament suggest south‐directed transport. CaF1 and CaF2 were rotated to a north‐south trend in zones of high strain during the CaD2 event. CaD3, later in the Cambrian, folded the earlier foliations in the Arthur Lineament and produced west‐dipping steep thrusts, creating the linear expression of the structure.  相似文献   

17.
Finite-element folds of similar geometry   总被引:3,自引:0,他引:3  
Model folds of similar geometry have been produced by using the finite-element method and the constitutive relations of a layer of wet quartzite embedded in a marble matrix with an initially sinusoidal configuration and a 10° limb dip. The power law for steady-state flow of Yule Marble (Heard and Raleigh, 1972) is used for the matrix and our new law for Canyon Creek quartzite deformed in the presence of water is used for the layer. The equiv- alent viscosity of the wet quartzite is highly temperature-sensitive, giving rise to a strong temperature dependence of the quartzite: marble viscosity ratio which, at a strain rate of 10−14/sec, drops from 543 at 200° to 0.13 at 800°C. At 375°C (ηq/ηm = 10), concentric folds develop at all strains to 80% natural shortening and stress, finite strain and viscosity distributions are somewhat similar to those found previously. Raising the temperature to 550° C (ηq/ηm = 1), at any stage of prior amplification, causes the folds to flatten with increasing strain, accompanied by attenuation of limbs and thickening of hinges, leading to folds with similar geometries and isoclinal folds at extreme strains. The effects are more pronounced at higher temperatures and at 700° C (ηq/ηm = 0.3) limb attenuation is so severe as to give rise to unrealistic geometries. At temperatures below about 600° C (ηq/ηm = 2), similar folds do not form. It thus appears as if a viscosity contrast near unity is required to produce similar folds in rocks, under the conditions simulated and different temperature dependencies of viscosities of materials in layered sequences is one important means of reducing viscosity contrasts.  相似文献   

18.
We present microstructural analyses demonstrating how the geometrical distribution and interconnectivity of mica influences quartz crystallographic preferred orientation (CPO) development in naturally deformed rocks. We use a polymineralic (Qtz + Pl + Kfs + Bt + Ms ± Grt ± Tur) mylonite from the Zanskar Shear Zone, a section of the South Tibetan Detachment (NW Himalaya), to demonstrate how quartz CPO intensity decreases from quartz-dominated domains to micaceous domains, independently of whether or not quartz grains are pinned by mica grains. We then use a bimineralic (Qtz + Ms) mylonite from the Main Central Thrust (NW Himalaya) to show how increasing mica grain connectivity is concomitant with a systematic weakening of quartz CPO. Our results draw distinctions between CPO weakening due to: (i) second phase drag, leading to ineffective recovery in quartz; and (ii) increased transmission and localisation of strain between interconnected mica grains. In the latter case, well-connected micaceous layers take up most of the strain, weakening the rock and preventing straining of the stronger quartz matrix. Our findings suggest that rock weakening in quartz-rich crustal rocks is influenced not only by the presence of mica-rich layers but also the degree of mica grain connectivity, which allows for more effective strain localization through the entire rock mass.  相似文献   

19.
Experiments were conducted to study Mg diffusion in quartz grain boundaries. A detector particle method was used to study grain-boundary diffusion because Mg was confined exclusively to the grain boundaries. Diffusion couples were assembled by placing a MgF2 disk against a disk of quartzite, which was placed against a disk of quartzite that contained fayalite (Fe2SiO4) ‘detector particles.’ During diffusion experiments, Mg diffused along the grain boundaries of the central quartzite toward the fayalite quartzite where it was incorporated into fayalite detector particles. The only pathway for transport from the diffusant source to fayalite detector particles was through the grain boundaries in the central quartzite. The cross-sectional area of the grain boundaries that delivered Mg to the fayalite detector particles was determined from scanning electron microscope images. The Mg contents of the fayalite detector particles were used to calculate the mass of Mg that fluxed through the grain boundaries. During the diffusion experiments, pyroxene crystallites nucleated and grew in the central quartzites from Mg and Fe that was transported along quartz grain boundaries. The Mg contents of the crystallites vary linearly throughout the quartzites, suggesting that steady-state transport conditions were rapidly established in the quartz grain boundaries. Magnesium concentrations in the pyroxene crystallites are proportional to concentration gradients in the grain boundaries of the central quartzite. Grain-boundary fluxes and linear concentration gradients were used to calculate diffusion of Mg in grain boundaries of the central quartzite component in the diffusion couples.  相似文献   

20.
Three major episodes of folding are evident in the Eastern Ghats terrain. The first and second generation folds are the reclined type; coaxial refolding has produced hook-shaped folds, except in massif-type charnockites in which non-coaxial refolding has produced arrow head folds. The third generation folds are upright with a stretching lineation parallel to subhorizontal fold axes. The sequence of fold stylesreclinedF 1and coaxialF 2, clearly points to an early compressional regime and attendant progressive simple shear. Significant subhorizontal extension duringF 3folding is indicated by stretching lineation parallel to subhorizontal fold axes. In the massif-type charnockites low plunges ofF 2folds indicate a flattening type of deformation partitioning in the weakly foliated rocks (magmatic ?). The juxtaposition of EGMB against the Iron Ore Craton of Singhbhum by oblique collision is indicative of a transpressional regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号