首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Polymetamorphic orthoamphibole-bearing gneisses from the vicinity of shear zones in Casey Bay, Enderby Land, Antarctica, record both the overprinting of Archaean granulite lithologies by Proterozoic metamorphism and the subsequent evolution of the latter episode during localized deformation.
Mineral chemistry and zoning relationships in orthoamphibole-garnet-kyanite-quartz and later orthoamphibole-garnet-cordierite-quartz assemblages are used together with interpretation of reaction and corona textures to constrain the Proterozoic pressure-temperature path experienced by the rocks. Consideration of reaction topologies, P-T-X(Fe-Mg-A1) relationships in orthoamphibole-bearing assemblages, and standard geothermobarometry indicate that the gneisses underwent a near-isothermal decompression P-T history (steep positive dP/dT) from ± 8 kbar and 700°C to <5.5kbar and 650°C. This uplift path is correlated with the general effects of Rayner Complex metamorphism and deformation which occurred after 1100 Ma in a major erogenic belt south of Casey Bay.  相似文献   

2.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

3.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

4.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

5.
Metamorphic mineral assemblages and textures from Early Palaeozoic continental margin rocks in north-western Newfoundland indicate that different structural levels have contrasting metamorphic histories. Rocks of the East Pond Metamorphic Suite, which represent the older, structurally lower level of the margin, experienced an early high-pressure–low-temperature stage of metamorphism (10–12 kbar minimum, 450–500°C) which produced eclogite in mafic dykes and phengite–garnet assemblages in pelites. This was overprinted by higher temperature–lower pressure amphibolite facies metamorphism (700–750°C, 7–9 kbar minimum) which produced complex symplectic textures in rocks of all compositions. Rocks of the Fleur de Lys Supergroup, which were deposited in the stratigraphically higher levels of the rifted margin, reached pressures of 7–8.5 kbar at about 450°C during the early stages of metamorphism, overprinted by assemblages which indicate maximum temperatures of 550–600°C at about 6.5 kbar. The metamorphic history of both units is interpreted to be the result of thermal relaxation following initial burial of a continental margin by overriding thrust sheets. Since there is no evidence that maximum pressures or temperatures within the Fleur de Lys Supergroup were ever as high as those reached in the East Pond Metamorphic Suite, these rocks may have followed parallel, 'nested' P–T–t paths, with the more deeply buried East Pond Metamorphic Suite subjected to greater thermal relaxation effects. Quantitative modelling of P–T–t paths is not possible with the present data, owing to both large uncertainties in P–T estimates, and in the time of metamorphism.  相似文献   

6.
The Tormes Gneissic Dome (TGD, NW sector of the Iberian Massif, Spain) is a high-grade metamorphic complex affected by a major episode of extensional deformation (D2). The syn-D2 P–T  path of the Lower Unit of the TGD was deduced from the analysis of reaction textures related to superimposed fabrics developed during exhumation, analysis of mineral zoning and thermobarometric calculations. It comprises an initial phase of decompression, determined using the tweequ thermobarometric technique, from 6.4–8.1 kbar at 735–750 °C (upper structural levels) and 7.2 kbar at 770 °C (lower structural levels) to 3.3–3.9 kbar and 645–680 °C. This evolution is consistent with the observed sequence of melting reactions and the generation of garnet- and cordierite-bearing anatectic granitoids. The later part of the syn-D2 P–T  path consisted of almost isobaric cooling associated with the thermal re-equilibration of the unit in the new structural position. This segment of the P–T  path is recorded by assemblages with And +Bt+Ms and Ms+ Chl +Ab related to the later mylonitic S2 fabrics, which indicate retrogression to low-amphibolite and greenschist facies conditions.  相似文献   

7.
Cambrian orogenesis (550–490 Ma) in the Lambert Province of the southern Prince Charles Mountains resulted in three successive stages of deformation. The earliest of these deformations resulted in the development of a layer‐parallel foliation (S1) that was folded into macro‐scale recumbent folds (F2). Subsequent deformation buckled the rocks into long‐wavelength (c. 20 km), SW‐ to NW‐trending antiformal closures (F3) mostly separated from each other by west to SW trending, steeply dipping, high‐strain zones. Metapelitic rocks from the region are divisible into two compositional types: a high‐Al, ‐Fe and ‐K type and a high‐Mg, ‐Ca and ‐Na type. In rocks of both composition, relic staurolite preceded the formation of upper amphibolite facies garnet + biotite + sillimanite ± muscovite mineral assemblages that record peak pressures and temperatures of c. 650–700 °C and 6–7 kbar. Subsequent decompression of c. 3 kbar is implied from texturally late plagioclase and a reduction in the modal abundance of garnet in the high‐Al, ‐Fe and ‐K metapelites, and from texturally late cordierite in the more magnesium rocks. This clockwise P–T–t path, with prograde heating followed by rapid decompression, is: (i) equivalent to that recorded in the same‐aged rocks at Prydz Bay located 600 km to the north, and (ii) similar to the modelled response of the crust to thickening following continent–continent collision. These results indicate that large areas of East Antarctica were thickened and rapidly exhumed, probably in response to collisional orogenesis during the Early Cambrian. This supports the inference that Early Cambrian orogenesis in the Prydz Bay–Prince Charles Mountains region of East Antarctica marks one of the fundamental lithospheric boundaries within Gondwana.  相似文献   

8.
Abstract The Chuncheon amphibolite, part of the Gubongsan Group which overlies the Yongduri gneiss complex, is interlayered with calc-silicate rock, marble, quartzite, biotite schist and quartzofeldspathic gneiss in the central Gyeonggi massif, South Korea. Metamorphic pressures and temperatures estimated from the amphibolite are 5.5–10.6 kbar and 615–714°C. These P—T conditions are close to those defined by the reaction curve between kyanite and sillimanite, and suggest medium-pressure-type metamorphism of the Chuncheon amphibolite. For two metapelites intercalated with the amphibolite, temperatures are estimated to be 607–699° C, consistent with those obtained from the amphibolite. On the other hand, pressures estimated from these metapelites are significantly different, 4–6 kbar and 9–13 kbar, when rim and core compositions of garnet are, respectively, used. These P—T estimates obtained from the amphibolite and metapelite suggest a nearly isothermal decompression of 3–7 kbar during denudation. Rapid decompression is likely on the basis of the results of mineral chemistry, phase equilibria and geothermobarometer. Moreover, in conjunction with the occurrence of kyanite in the adjacent Gyeonggi gneiss complex, P—T estimates of the Chuncheon amphibolite and metapelite suggest a clockwise P—T—t path. This evolutionary path may be related to the amalgamation of continents during the late Proterozoic event which corresponds to the Jinningian orogeny in the Qinling belt of China.  相似文献   

9.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   

10.
The stability of osumilite in metapelitic granulites   总被引:4,自引:1,他引:4  
Abstract A petrogenetic grid and related diagrams derived from KFMASH-system experiments demonstrate that osumilite is stable in relatively magnesian bulk rock compositions ( X Mg > 0.6) at temperatures in excess of 875° C and pressures less than 11 kbar. The experiments, involving the dehydration melting of biotite in synthetic metapelites, were conducted in the range 850–1000° C. Both the mineral assemblages and phase compositions reported from well-documented natural examples of osumilite-bearing rocks are reproduced by the experiments at P-T conditions similar to those previously estimated for these occurrences. Peak metamorphic P-T conditions can be reliably inferred from distinctive osumilite-bearing assemblages identified in the phase diagrams, thereby avoiding the problems of diffusional re-equilibration that often prohibits conventional geothermobarometry from recovering peak conditions. Integration of the experimental data with recent independent experiments, after correcting the latter for an underestimated friction correction, allows extension of the petrogenetic grid to higher temperatures. The extended grid is applied to assess and refine the metamorphic history of the Napier Complex, East Antarctica: the high- P stability limit for osumilite in the Napier Complex is 9–10 kbar, the prograde P-T-t path is not necessarily anticlockwise and isobaric cooling in the Scott and Tula mountains occurred, respectively, at pressures greater and less than reactions in the range 8–9 kbar. The stability range for osumilite predicted by the KFMASH-system petrogenetic grid overlaps many more metamorphic terranes than osumilite is found in. Whilst osumilite is not distinctive in thin section and is prone to retrogression, it is possible that carbon dioxide present in the natural system stabilizes cordierite at the expense of osumilite.  相似文献   

11.
Abstract Two blueschist belts in the North Qilian Mountains occur in Middle Cambrian and Lower Ordovician strata and strike N30–35°W for about 500 km along the Caledonian fold belt on the south-west margin of the Sino-Korean plate. The styles of metamorphism and deformation are quite different in the two belts. The Middle Cambrian to Ordovician rocks in the high-grade belt are mainly blueschists and C-type eclogites in which six phases of lower and upper crustal deformation have been recognized. The rocks contain glaucophane, phengite, epidote, clinozoisite, chlorite, garnet, stilpnomelane, piedmontite, albite, titanite and quartz. The estimated P–T conditions of eclogites are 340 ± 10°C, 8 ± 1 kbar and, of blueschist, >380°C, 6–7 kbar. The Ordovician rocks in the low-grade belt are characterized by ductile to brittle deformation in the middle to upper crust. The low-grade blueschists contain glaucophane, lawsonite, pumpellyite, aragonite, albite and chlorite. The estimated P–T conditions are 150–250°C and 4–7 kbar.
K–Ar and 39Ar/40Ar geochronology on glaucophane and phengite from the high-grade blueschist belt suggest two stages of metamorphism at 460–440 and 400–380 Ma, which may represent the times of subduction and orogeny. The subduction metamorphism of the northern low-grade blueschist belt took place approximately at the end of the Ordovician.  相似文献   

12.
In the Boi Massif of Western Timor the Mutis Complex, which is equivalent to the Lolotoi Complex of East Timor, is composed of two lithostratigraphical components: various basement schists and gneisses; and the dismembered remnants of an ophiolite. Cordierite-bearing pelitic schists and gneisses carry an early mineral assemblage of biotite + garnet + plagioclase + Al-silicate, but contain no prograde muscovite; sillimanite occurs in a textural mode which suggests that it replaced and pseudomorphed kyanite at an early stage and some specimens of pelitic schist contain tiny kyanite relics in plagioclase. Textural relations between, and mineral chemistries of, ferro-magnesian phases in these pelitic chists and gneisses suggest that two discontinuous reactions and additional continuous compositional changes have been overstepped, possibly with concomitant anatexis, as a result of decrease in Pload during high temperature metamorphism. The simplified reactions are: garnet and/or biotite + sillimanite + quartz + cordierite + hercynite + ilmenite + excess components. P-T conditions during the development of the early mineral assemblage in the pelitic gneisses are estimated to have been P + 10 kbar and T > 750°C, based upon the plagioclase-garnet-Al-silicate-quartz geobarometer and the garnet-biotite geothermometer. P-T conditions during the subsequent development of cordierite-bearing mineral assemblages in the pelitic gneisses are estimated to have been P + 5 kbar and T + 700°C with XH2O < 0.5, based upon the Fe content of cordierite occurring in the assemblage quartz + plagioclase + sillimanite + biotite + garnet + cordierite coexisting with melt. Final equilibration between some of the phases suggests that conditions dropped to P > 2.3 kbar and T > 600°C. A similar exhumation P-T path is suggested for the pelitic schists with early metamorphic conditions of P > 6.2 kbar and T > 745°C and subsequent development of cordierite under conditions in the range P = 3-4 kbar and T = 600-700°C. The tectonic implications of these P-T estimates are discussed and it is concluded that the P-T path followed by these rocks was caused by decompression during rifting and synmetamorphic ophiolite emplacement resulting from processes during the initiation and development of a convergent plate junction located in Southeast Asia during late Jurassic to Cretaceous time.  相似文献   

13.
Mineral equilibria modelling and electron microprobe chemical dating of monazite in granulite facies metapelitic assemblages from the MacRobertson Land coastline, Rayner Complex, east Antarctica, are consistent with an 'anticlockwise' Neoproterozoic P–T–t path. Metamorphism occurred at c. 990–970 Ma, achieving peak conditions of 850 °C and 5.6–6.2 kbar at Cape Bruce, and 900 °C and 5.4–6.2 kbar at the Forbes Glacier ∼50 km to the east. These peak metamorphic conditions preceded the emplacement of regionally extensive syntectonic charnockite. High temperature conditions are likely to have been sustained for 80 Myr by lithospheric thinning and repeated pluton emplacement; advection was accompanied by crustal thickening to maximum pressures of 6–7 kbar, followed by near-isobaric cooling. This P–T–t path is distinct from that of rocks in adjacent Kemp Land, ∼50 km to the west, where a 'clockwise' P–T–t path from higher- P conditions at c. 940 Ma may reflect the response of a cratonic margin displaced from the main magma flux. In this scenario, crustal shortening was initially accommodated in younger, fertile crust (MacRobertson Land) involving metasediments and felsic plutons with the transfer of strain to adjacent older crust (Kemp Land) subsequent to charnockite emplacement.  相似文献   

14.
Abstract Granulites at Fyfe Hills in Enderby Land, Antarctica, crystallized at temperatures in excess of 850°C, and possibly as high as 1000°C, and at pressures of 8-10kbar during the mid to late Archaean. A number of features, including repeated retrograde metamorphism at 5.5-8kbar, retrograde reaction textures, and rimward zoning in pressure sensitive systems, suggest that following peak metamorphism the granulites stabilized at a depth of 18-26 km. After stabilization, the granulites cooled near-isobarically to temperatures of 600-700°C. Assuming a total crustal thickness of 35-40 km during this late Archaean interval of isobaric cooling, the peak metamorphic crustal thickness is estimated at 35-56 km. This estimate is significantly less than the 60-70 km obtained by summing the depths of the present levels of exposure (26-34 km) and the thickness of the crust presently beneath Fyfe Hills (approxi-mately 35km) and is, therefore, consistent with independent evidence for extensive post-Archaean thickening of the Enderby Land crust.  相似文献   

15.
Abstract Petrological data from intercalated pelitic schists and greenstones are used to construct a pressure–temperature path followed by the Upper Schieferhülle (USH) series during progressive metamorphism and uplift in the south-west Tauern Window, Italy. Pseudomorphs of Al–epidote + Fe-epidote + albite + oligoclase + chlorite after lawsonite and data on amphibole crystal chemistry indicate early metamorphism in the lawsonite-albite-chlorite subfacies of the blueschist facies at P ± 7–8 kbar. Geothermometry and geobarometry yield conditions of final equilibration of the matrix assemblage of 475±25°C, 5–6 kbar; calculations with plagioclase and phengite inclusions in garnet indicate early garnet growth at pressures of ∼ 7.5 kbar. Garnet zoning patterns are complex and reversals in zoning can be correlated between samples. Thermodynamic modelling of these zoning profiles implies garnet growth in response to four distinct phases of tectonic activity. Fluid inclusion data from coexisting immiscible H2O–CO2–NaCl fluids constrain the uplift path to have passed through temperatures of 380 + 30°C at 1.3 + 0.2 kbar.
There is no evidence for metamorphism of USH at pressures greater than ∼ 7.5 kbar in this area of the Tauern Window. This is in contrast to pressures of ± 10 kbar recorded in the Lower Schieferhülle only 2–3 km across strike. A history of differential uplift and thinning of the intervening section during metamorphism is necessary to reconcile the P–T data obtained from these adjacent tectonic units.  相似文献   

16.
《Gondwana Research》2000,3(1):79-89
The structural and petrographic studies of the metamorphic rocks of the Schirmacher region, East Antarctica, indicate polyphase metamorphism, dominantly of an early granulite and later amphibolite facies metamorphism. In order to understand the metamorphic evolution of the region, the temperature and pressure of metamorphism has been estimated for felsic gneisses and charnockites using conventional models of geothermometry and geobarometry. The studies showed that, the early granulite facies metamorphism and charnockitization took place around 827±29°C at 7.3±0.3 kbar, while the later amphibolite facies metamorphism and granitization took place around 654±27°C at 5.4±0.4 kbar. The pressure and temperature recorded in these rocks suggest that metamorphism was initiated at 20 to 27 km depth, with a geothermal gradient of around 32°C/km. The P-T conditions reflect isobaric cooling path, with a gentle dP/dT slope (∼10±1 bar/°C). The isobaric cooling path owes its origin to the underplating of crust by mantle derived magmas.  相似文献   

17.
The Kanskaya formation in the Yenisey range, Eastern Siberia is a newly studied example of retrogression of granulite facies rocks. The formation consists of two stratigraphical units: the lower Kuzeevskaya group and the upper Atamanovskaya group. Rocks from both of these units show rare reaction textures such as replacement of cordierite by garnet, sillimanite and quartz, silimanite coronas around spinel and corundum, and garnet rims around plagioclase in metabasites, while plagioclase rims around garnet can be seen in associated metapelites. The paragenesis quartz + orthopyroxene + sillimanite is a feature of the Kuzeevskaya group. In many samples, chemical zoning of garnet and cordierite shows an increase in Mg from core to rim as well as the reverse.
Biotite-garnet-cordierite-sillimanite-quartz as well as spinel±biotite-garnet°Cordierite±sillimanite-quartz assemblages were studied using geothermometers and geobarometers based on both exchange and net-transfer reactions (Perchuk & Lavrent'eva, 1983; Aranovich & Podlesskii, 1983; Gerya & Perchuk, 1989). Detailed investigation of 10 samples including 1000 microprobe analyses revealed decompression (first stage) followed by the near isobaric cooling of the granulites. From geological studies, the 7 km total thickness of the sequence closely corresponds to the pressure difference (∼ 2.2kbar) measured by geobarometers in the samples taken from different levels in the sequence. Individual samples yield P-T paths ranging from 100°C/kbar to 140°C/kbar depending on their locations with respect to the large Tarakskiy granite pluton. In places the 100°C/kbar path changed to the 140°C/kbar due to the influence of the intrusion. In a P-T diagram these trajectories are subparallel lines, whose P-T maxima define the Archaean geotherm between 3.1 and 2.7 Ga, determined isotopically. A petrological model for P-T evolution of the Kanskaya formation is proposed.  相似文献   

18.
The Feiran–Solaf metamorphic complex of Sinai, Egypt, is one of the highest grade metamorphic complexes of a series of basement domes that crop out throughout the Arabian-Nubian Shield. In the Eastern Desert of Egypt these basement domes have been interpreted as metamorphic core complexes exhumed in extensional settings. For the Feiran–Solaf complex an interpretation of the exhumation mechanism is difficult to obtain with structural arguments as all of its margins are obliterated by post-tectonic granites. Here, metamorphic methods are used to investigate its tectonic history and show that the complex was characterized by a single metamorphic cycle experiencing peak metamorphism at ∼700–750 °C and 7–8 kbar and subsequent isothermal decompression to ∼4–5 kbar, followed by near isobaric cooling to 450 °C. Correlation of this metamorphic evolution with the deformation history shows that peak metamorphism occurred prior to the compressive deformation phase D 2, while the compressive D 2 and D 3 deformation occurred during the near isothermal decompression phase of the P–T loop. We interpret the concurrence of decompression of the P–T path and compression by structural shortening as evidence for the Najd fault system exhuming the complex in an oblique transpressive regime. However, final exhumation from ∼15 km depth must have occurred due to an unrelated mechanism.  相似文献   

19.
ABSTRACT The Bunger Hills, East Antarctica, experienced a low-pressure granulite facies orogenic event during the Proterozoic. The stable coexistence of the S1 foliation-parallel M1 assemblages, garnet-cordierite-spinel-ilmenite and garnet-sillimanite-spinel-ilmenite-rutile, in quartz-bearing pelitic gneisses is evidence for metamorphic peak pressures of around 4 kbar during M1, at temperatures of about 800°C. The growth of massive reaction coronas of garnet and cordierite around hercynitic spinel and iron-titanium oxides during M2 is evidence for the destabilization of the M1 assemblages during compression. Thermodynamic calculations on the M2 assemblages indicate formation pressures of 6–7 kbar at temperatures of about 750°C. Thus, the gneisses from the Bunger Hills indicate about 2 kbar or more of compression during minimal cooling. Such a P-T path is different from that of many other Proterozoic terranes which are characterized by isobaric cooling or decompression. A large charnockite body, which is undeformed, was intruded at ~950°C, towards the end of compression. The low pressures during M1 can be best explained by metamorphism at mid-crustal levels in thin continental crust in thin lithosphere above a thermal perturbation in the underlying asthenosphere. We suggest that the compression during cooling was a result of gravitational backflow in which the action of body forces between adjacent normal thickness crust and the thin crust of the Bunger Hills is 'switched on’by the thermal perturbation. Within such a model, the timing of intrusion of the charnockite exposed in the Bunger Hills is consistent with its generation by partial melting during the metamorphic maximum of the lowermost crust.  相似文献   

20.
Part of East Antarctica's shield collided with Greater India during assembly of the Rodinia supercontinent. The pre-Rodinia continental margin of the Antarctic landmass is represented by Palaeoproterozoic basement rocks of the Lambert Complex, which are best exposed in the North Mawson Escarpment area of Antarctica's Prince Charles Mountains. Having investigated the structure of this escarpment, we conclude that rocks of the Lambert Complex were stacked by oblique northward overthrusting motions while deforming pervasively in the infrastructure zone of a convergent orogen, i.e. when this continental fragment of pre-Rodinia Antarctica collided with India around 960–905 m.y. ago. This resulted in exhumation to shallower, but still deep, crustal levels, so that the deformation was accompanied by Barrovian-type metamorphism that evolved to high-temperature, low-pressure conditions. The metamorphism outlasted most of the ductile deformation with temperatures reaching 750 °C, though potentially greater, under pressure conditions of about 5 kbar. In this paper we outline the structures and, from a plate tectonics viewpoint, consider their likely association with Rodinian and Gondwanan orogens in East Antarctica, i.e. the Rayner and Prydz Belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号