首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reported here are results from new flume experiments examining deposition and entrainment of inert, silt‐sized particles (with spherical diameters in the range from 20 to 60 μm) to and from planar, impermeable and initially starved beds underlying channel flows. Bed surfaces comprised smooth or fixed sand‐size granular roughness and provided hydraulically smooth to transitionally rough boundaries. Results of these experiments were analysed with a simple model that describes the evolution of vertically averaged concentration of suspended sediment and accommodates the simultaneous delivery to and entrainment of grains from the bed. The rate of particle arrival to a bed diminishes linearly, and the rate of particle entrainment increases by the 5/2 power, as the value of the dimensionless Saffman parameter S = u*3/g’ν approaches a threshold value of order unity, where u is the conventional friction velocity of the turbulent channel flow, g’ is the acceleration due to gravity adjusted for the submerged buoyancy of individual particles and ν is the kinematic viscosity of the transporting fluid. This transport behaviour is consistent with the notion that non‐cohesive, silt‐sized particles can neither reach nor remain on an impermeable bed under flow conditions where mean lift imposed on stationary particles in the viscous sublayer equals or exceeds the submerged weight of individual particles. Within the size range of particles used in these experiments, particle size and the characteristic size of granular roughness, up to that of medium sand, did not affect rates of dimensionless arrival or entrainment to a significant degree. Instead, a new but consistent picture of fine‐particle transport is emerging. Silt‐sized material, at least, is subject to potentially significant interaction with the bed during intermittent suspension transport at intermediate flow speeds greater than the value required for initiation of transport (ca 20 cm sec?1) but less than the value (ca 50 cm sec?1) required by the Saffman criterion ensuring transport in fully passive suspension or, equivalently, ‘wash‐load’.  相似文献   

2.
A discrete element method is applied to a three‐dimensional analysis related to sediment entrainment on a micro‐scale. Sediment entrainment is the process by which a fluid medium accelerates particles from rest and advects them upward until they are either transported as bedload or suspended by the flow. Modelling of the entrainment process is a critically important aspect for studies of erosion, pollutant resuspension and transport, and formation of bedforms in environmental flows. Previous discrete element method studies of sediment entrainment have assumed the flow within the particle bed to be negligible and have only allowed for the motion of the topmost particles. At the same time, micro‐scale experimental studies indicate that there is a small slip of the fluid flow at the top of the bed, indicating the presence of non‐vanishing fluid velocity within the topmost bed layers. The current study demonstrates that the onset of particle incipient motion, which immediately precedes particle entrainment, is highly sensitive to this small fluid flow within the topmost bed layers. Using an exponential decay profile for the inner‐bed fluid flow, the discrete element method calculations are repeated with different fluid penetration depths within the bed for several small particle Reynolds numbers. For cases with slip velocity corresponding to that observed in previous experiments with natural sediment, the predicted particle velocity is found to be a few percent of the fluid velocity at the top of the viscous wall layer, which is a reasonable range of velocities for observation of incipient particle motion. This method for prescribing the fluid flow within the particle bed allows for the current discrete element method to be extended in future studies to the analysis of sediment entrainment under the influence of events such as turbulent bursting. Additionally, predictions for the slip velocities and fluid flow profile within the bed suggest the need for further experimental studies to provide the data necessary for additional improvement of the discrete element method models.  相似文献   

3.
《Sedimentary Geology》2004,163(3-4):311-321
The velocity profile for unidirectional currents is usually determined by two forms of the law of the wall, which are valid for smooth and rough boundaries, respectively. The law of the wall for smooth boundaries outside the viscous sublayer and buffer layer applies where the boundary Reynolds number (Re*) is less than 5. The velocity in this case depends only on the dimensionless distance (yd) from the bottom. For rough boundaries where Re* is more than 65, the law of the wall is independent of the boundary Reynolds number, but the bottom roughness (k) has to be taken into account. The mean or median particle grain size (D) is commonly substituted for bottom roughness. At present, there is no generally accepted law of the wall for the transitional flow regime between hydrodynamically smooth and rough conditions. In this paper, an integrated law of the wall is proposed for the transitional regime, yielding velocity profiles that correspond well to observed velocity profiles under these conditions. The result is applied to a set of flume data, using an improved procedure to determine the bedload transport rate.  相似文献   

4.
Drag reduction has been observed in suspension flows of low clay concentrations in previous studies. Here, velocity profiles and bed shear stresses, expressed as shear velocities, are measured using epoxy-coated hot-film sensors to evaluate drag reduction and controlling factors in suspension flows of high clay concentrations (4 and 8 g l–1). The directly measured shear velocity in the viscous sublayer is found to be reduced by as much as 70% relative to the profile-derived shear velocity in the logarithmic layer. Drag reduction is found to increase with increasing clay concentration and decreasing flow strength. Density profile data indicate that the suspension flows were not stratified, and examinations of particle size distributions suggest that flocculation was not significant in causing the observed drag reduction. Measurements of the velocity profiles and of the shear velocity in the viscous sublayer indicate significant thickening of the inner wall layer and show turbulence damping in the viscous sublayer. These effects become stronger for higher concentrations and lower flow strength, suggesting that they are responsible for drag reduction in flows of clay suspension. Empirical relationships have been derived that can be used to predict the magnitude of drag reduction and the reduced shear stress in mud suspensions for both laboratory and field cohesive sediment transport studies.  相似文献   

5.
Experiments are described in which the threshold conditions for sediment entrainment are measured for uniform and mixed sand beds beneath both steady and combined steady/oscillatory flows. Derived critical shear stresses are compared with the mixed bed entrainment model of Wiberg & Smith (1987). As predicted by the model, coarser grains within a sand mixture are entrained at lower bed shear stresses than progressively finer grains. Entrainment occurs generally at lower shear stresses than predicted by the model, especially under unidirectional flows. This may be the result of grains resting in unusually unstable positions during the experiments because the beds are ‘unworked’ at the start of the experiments. The model of Wiberg and Smith predicts threshold conditions more accurately for the mixed beds if the bed pivoting angle is correctly defined. The pivoting angles of the beds used here are measured using a new technique designed specifically for comparison with the threshold data. The measured angles repeat the finding that the coarse grains are more mobile than the finer fractions of a mixture. The results are poorly described by the pivoting angle model presented by Wiberg & Smith (1987) and are better represented by a model of the form Φ = αDγ(Di/D50)β (after 21 ), where α, γ and β are empirical constants. The threshold model is found to be more effective using the improved pivoting relationship. The entrainment of grains is found to be easier beneath unidirectional flows than combined flows, in accordance with previous authors’ findings. A suggestion that this result is caused by a change in the erosion mechanism beneath wave flows is made. Wave boundary layers may act as an extended laminar sublayer over bed grains and reduce the erosive efficiency of the overlying current flow. The results of the experiment have implications for the natural sorting mechanisms of sediment beds being deposited in near-threshold flows.  相似文献   

6.
Mcewan  Jefcoate  & Willetts 《Sedimentology》1999,46(3):407-416
A grain-scale model of fluvial bed load transport is described, with particular emphasis on the equilibrium between the saltating grains and the near bed flow, and its role in determining transport rate. The model calculates, explicitly, the modification of the velocity profile by the moving grains, together with the consequential reduction in surface fluid shear stress. As the surface fluid shear stress is reduced by the moving grains, so the entrainment rate decreases and the model reaches a steady state. The results provide insight into two important questions at a macroscopic level. First, they show that, in the absence of large static roughness, the dynamic roughness caused by the moving grains may be a significant contributor to flow resistance. Secondly, the model indicates the manner in which transport may be limited by a combination of the transport capacity of the flow and the availability of sediment for entrainment. Only in the case of high sediment availability does the fluid shear stress acting at the surface approach the critical entrainment value, reproducing the behaviour suggested by Bagnold (1956 ) and Owen (1964 ). This suggests that prediction formulae based on this assumption only describe the bed load transport system under particular conditions.  相似文献   

7.
采用图像识别与推移质动态监测技术,开展基于双峰型非均匀推移质的系列水槽试验.通过引入反映床面粗糙度、粘性底层特性与颗粒非均匀度η(粗细比)的综合水流强度函数Ψb、特征弗劳德数Frb,系统研究了不同水流强度与床沙组成条件下的推移质输移特性以及颗粒非均匀度对输沙率的影响.通过对关键因子的辨识与量纲分析,提出了双峰型非均匀推移质输移模式,建立了基于近壁特征因子的水流强度Ψb与非均匀推移质输移强度Φ'的函数关系.对双峰型底沙输移机理的分析表明,非均匀沙的组成特征使得η成为影响Φ'的重要参量;正是细粒对粗粒的解怙作用对粗沙运动产生重要影响,使推移质输移率与颗粒非均匀度间呈现驼峰关系,峰值对应的粗细比ηc约为3∶7.  相似文献   

8.
ABSTRACT Particles projecting from the bed of an alluvial channel distort the fluid stream to produce a distinctive pressure field. This has considerable significance for both the entrapment and entrainment of other particles and is a primary cause of the widespread occurrence of pebble clusters and boulder shadows. Lift and drag forces are determined on clustered hemispherical particles of varying size. In the wake of an obstructing particle both forces are shown to vary directly with particle separation in a linear fashion. On the stoss side of the cluster, drag is uniform regardless of the separation of the component particles, but lift is shown to increase when particle separation is small, so affecting stability. This mutual interference of neighbouring clustered bed particles is a vital consideration of incipient motion and is shown by field evidence to cause a wide range in transport stage for particles of similar size and shape. On average, 46% of clustered particles are entrained by flood flow compared to 87% of particles in open plane-beds. The influence of clusters is a major determinant of sedimentary sorting.  相似文献   

9.
Few studies have examined the hydrodynamic behaviour of carbonate sediments. The data presented here are the result of preliminary research on entrainment in well- and poorly sorted carbonate sands. Experiments were performed using naturally occurring sediments in a tilting, recirculating freshwater flume. Results indicate that when of similar size, shape and density, the transport threshold of carbonate sands is similar to that of quartz. However, owing to their lower density and often platy or irregular shape, skeletal sands require a lower shear stress to initiate transport. Because the density of carbonate particles may increasingly vary with grain size, the threshold of motion in coarse carbonate grains may differ more markedly from that of quartz. In poorly sorted samples, results show that the coarse-grained constituents move before the finer-grained components. Grain properties and boundary-layer dynamics are believed to explain this phenomenon. Rollability of the larger grains combined with physical trapping and immersion within a low velocity sublayer are believed to prevent finer particles from moving. Given the appropriate sediments and flow conditions, it may therefore be possible to deposit and preserve fine-grained sediments in a flow regime typically thought to transport such materials.  相似文献   

10.
A major assumption of the Empirical Transport Model (ETM), widely adopted by both electric utilities and regulatory agencies for estimating the effects of entrainment mortality on fish populations in estuaries, is that the fraction of ichthyoplankton entrained varies only in response to changes in water withdrawals, not to changes in freshwater flow. We evaluated this assumption using a particle-tracking model to estimmate the probability of entrainment at power plants on the Hudson River during low and high freshwater flow periods and comparing those probabilities with estimates calculated from the ETM. We found that freshwater flow had a profound effect on the probability of entrainment. Both the number of river regions from which particles were entrained and the probabilities of entrainment for particles in those river regions differed between low-flow and high-flow periods. During high flow, particles spent less time in the grid box next to the intakes, reducing the probability of entrainment for particles released in the river region of each power plant and the average probability of entrainment across all regions at three power plants. The reduced probability of entrainment for particles released in the river regions of two power plants was offset by higher entrainment for particles upriver of these power plants. Although the average probabilities of entrainment across all river regions estimated with the particle-tracking model and the ETM were relatively similar for some power plants at high flow, low flow, or both, the probabilities for each river region differed considerably between the models. The number of river regions from which particles were entrained using the ETM was consistently undersestimated, resulting in probabilities for regions where entrainment occurred that were biased high compared with the particle-tracking model.  相似文献   

11.
为了通过实验测量泥沙起动概率,基于封闭槽道内开展的泥沙起动实验,系统论述了基于高速摄影的起动概率测量方法所涉及的起动概率定义、相机采样频率、图像处理方法、起动比例与运动比例的关系等关键问题.根据泥沙在水流紊动猝发作用下起动的物理机制,定义实测起动概率为单个紊动猝发周期内,从一定面积床面上冲刷外移的泥沙比例.根据推移质运动概念模型,提出高速图片拍摄间隔应小于推移质运动的中间时间尺度,以捕获泥沙的每一次起动.在高速图像处理时,通过连续两帧图片之间的灰度差实现运动比例的无偏差提取.进一步分析表明,运动泥沙可处于起动、止动或滑翔状态,运动比例等于起动比例、止动比例和滑翔比例之和,起动比例与运动比例之比等于两张图片之间的时间间隔除以推移质运动的中间时间尺度.基于上述关键技术,将高速摄影测量方法用于泥沙起动概率的测量,结果表明,临界起动水流条件时,床沙处于少量起动现象,对应的临界起动概率与窦国仁所推导的2.28%接近.  相似文献   

12.
泥-水界面物质交换过程对自然水体中污染物的迁移转化起重要作用,粗糙底床界面物质交换过程涉及到床面粗糙度和底床渗透率的影响。通过实验室环形水槽实验测量得到水力粗糙砂质底床条件下界面物质交换通量的定量数据和变化特征,采用参数化方法分析有效扩散系数与其主要影响参数之间的依赖关系。实验结果表明,在实验参数变化范围内,受上覆水平均流速、床面粗糙度和底床渗透率的共同作用,有效扩散系数从水力光滑区、过渡粗糙区至完全粗糙区呈现较为明显的分段变化特征,采用渗透率雷诺数可将有效扩散系数与其主要影响参数的依赖关系进行较为一致的描述。基于双参数(粗糙雷诺数和渗透率雷诺数)分析,确定了不同流动区域的相应阈值以合理表征床面粗糙度和底床渗透率对界面物质交换特性的综合影响。  相似文献   

13.
泥-水界面物质交换过程对自然水体中污染物的迁移转化起重要作用,粗糙底床界面物质交换过程涉及到床面粗糙度和底床渗透率的影响。通过实验室环形水槽实验测量得到水力粗糙砂质底床条件下界面物质交换通量的定量数据和变化特征,采用参数化方法分析有效扩散系数与其主要影响参数之间的依赖关系。实验结果表明,在实验参数变化范围内,受上覆水平均流速、床面粗糙度和底床渗透率的共同作用,有效扩散系数从水力光滑区、过渡粗糙区至完全粗糙区呈现较为明显的分段变化特征,采用渗透率雷诺数可将有效扩散系数与其主要影响参数的依赖关系进行较为一致的描述。基于双参数(粗糙雷诺数和渗透率雷诺数)分析,确定了不同流动区域的相应阈值以合理表征床面粗糙度和底床渗透率对界面物质交换特性的综合影响。  相似文献   

14.
A new model, which couples fluid and particle dynamics, has been developed to study the motion of the sediment-water mixture during intense bedload transport, including the velocity profiles of both sediment and water, the roughness length of an upper plane bed and the thickness of moving sediment layers. Standard mixing length theory is used to model the motion of water above the boundary between the overlying water and the sediment-water mixture. The turbulent flow within the moving sediment layers is described by a shear stress model, in which the effective viscosity of the flowing water is proportional to the velocity difference between the fluid and the sediment. The particle dynamics method, in which the equations of motion of each of many particles are solved directly, is applied to model the movement of sediment particles. The particle-fluid interaction is expressed by a velocity-squared fluid drag force exerted on each sediment particle. Both computer simulation results and theoretical analysis have shown that the velocities of both sediment and fluid during intense sediment transport decrease exponentially with depth in the top layers of a fast-moving sediment—water mixture. The thickness of the moving sediment layers, obtained from the computer simulation results, is proportional to the shear stress, which agrees with previous experimental observations.  相似文献   

15.
单向流边界层泥沙起动规律   总被引:2,自引:0,他引:2       下载免费PDF全文
Shields曲线常用于表示泥沙起动的临界条件,基于边界层理论,对Shields曲线各个流区的线型进行了推证;考虑粘结力的作用,对Shields参数及Shields曲线进行了修正,并给出修正Shields曲线表达式;在此基础之上,从边界层角度重新阐述了Shields曲线。结果表明:Shields曲线在光滑紊流及层流区呈直线分布,在过渡区与阻力系数线型保持一致,在粗糙紊流区呈水平直线分布;修正后Shields曲线与原始Shields曲线在形式上保持一致,修正Shields曲线表达式与实测数据吻合较好,适用于粗、细颗粒泥沙起动条件的计算;Shields曲线事实上代表了Shields参数与沙粒周围绕流流态的关系,同一颗粒处于不同流区起动时,其起动切应力不同。  相似文献   

16.
An experimental and theoretical examination has been made of the settling, entrainment and overturning of 176 valves representing 16 common Northwest European marine bivalve species, together with a comparative study of 15 plastic models in the form of segments from cylindrical tubes. Settling behaviour in both stagnant and moving water depends on particle mass, symmetry and concavo-convexity. Separated empty bivalve shells spin and spiral while settling and, if sufficiently elongated, also pitch. At the observed Reynolds numbers, the shells and models fall concave-up, the terminal fall velocity increasing as the square root of the unit immersed mass or weight. The drag coefficient is independent of Reynolds number but increases with surface roughness and, particularly, particle elongation. Turbulence slightly lowers the critical elongation for pitching. A separation vortex lies captive on the upper side of each descending particle. Consequently, an empty bivalve shell traversing a suspension of sand traps grains on its upper side at a rate proportional to their volume concentration and terminal fall velocity. This process, increasing the effective shell mass, is limited only by the capacity of the shell and grain spillage due to the possible onset of pitching. The ratio (non-dimensional) of a quantity proportional to the applied fluid force and the particle unit immersed weight consistently describes the entrainment of concave-up and convex-up particles, and also the immediate overturning of a valve on settling concave-up to the bed. These thresholds vary in relative magnitude with bed-particle friction and particle concavo-convexity. In general, convex-up particles are the most stable; the concave-up entrainment and overturning thresholds are of a substantially lower but similar magnitude. The high frequency of concave-up bivalve attitudes in turbidites is understandable largely in terms of the ability of a settling valve to increase in effective mass by grain entrapment. Convex-up attitudes in the lower parts of turbidites may record currents stronger than the overturning threshold.  相似文献   

17.
Models of sediment threshold by grain pivoting or sliding over underlying particles are examined in order to explore their application to evaluations of selective entrainment of gravel by flowing water. Of special interest is whether such process-based models provide satisfactory evaluations of flow competence and the movement of large clasts by floods. A detailed derivation is undertaken, focusing first on the fluid flow and forces at the particle level. The resulting threshold equation for the particle-level velocity is then modified to yield the mean entrainment stress for the flow as a whole. This approach is appropriate for considerations of selective entrainment of grains of varying sizes within a deposit, the sorting being due to their relative projection distances above the bed and the dependence of their pivoting angles on grain size and shape. The resulting threshold equations contain a number of coefficients (e.g. drag and lift) whose values are poorly known, but can be constrained by requiring agreement with the Shields curve for the threshold of grains in uniform deposits. If pivoting coefficients based on laboratory measurements with tetrahedral arrangements of particles are used in the models, smaller degrees of selective sorting are predicted than found in the field measurements of gravel entrainment. However, if reasonable modifications of those coefficients are made for expected field conditions, then the models yield good agreement with the data. Sliding models, where sorting is due entirely to projection distances of the grains above the bed, yield somewhat poorer agreement with the field data; however, the sliding models may have support from laboratory experiments on gravel entrainment in that the data and theoretical curves have similar concave trends. The existing measurements lack documentation of the mechanisms of grain movement, so it is not possible to conclusively determine the relative importance of grain pivoting versus sliding. In spite of such uncertainties, the results are encouraging and it is concluded that pivoting and sliding models for grain entrainment do have potential for field computations of selective entrainment and flow competence.  相似文献   

18.
A. KANEKO  H. HONJI 《Sedimentology》1979,26(1):101-113
It was observed that a monolayer of glass beads which were scattered sparsely on a rigid plane floor grew into regular waves of particles under oscillatory water flow. The relative displacement of two nearby particles due to viscous fluid forces seems to be responsible for the initiation of these particle waves. It was also observed that the similar particle waves were formed on the initially flat surface of a thick sand bed and subsequently developed into oscillatory sand ripples of a common type. On the basis of these observations, it is suggested that the particle waves may be the basic cause of the initiation of general ripple marks under oscillatory flow.  相似文献   

19.
Li  Pu  Wang  Jiading  Hu  Kaiheng  Shen  Fei 《Landslides》2021,18(9):3041-3062

Channel morphology and bed sediment erodibility are two crucial factors that significantly affect debris flow entrainment processes. Current debris flow entrainment models mostly hypothesize the erodible beds are infinite with uniform slopes. In this study, a series of small-scale flume experiments were conducted to investigate the effects of bed longitudinal inflexion and sediment porosity on basal entrainment characteristics. Experimental observations revealed that sediment entrainment is negligible at early stages and accelerates rapidly as several erosion points appear. Continual evolution of flow-bed interfaces changes interactions between debris flows and bed sediments, rendering the interfacial shear action involved into a mixed shear and frontal collisional action. Lower bed sediment porosity will change the spatial arrangement and orientation of particle mixture, strengthen the interlocking and anti-slide forces of adjacent sediment particles, and promote the formation of particle clusters, all of which will increase bed sediment resistance to erosion. By examining the post-experimental bed morphology, the slope-cutting amounts and topographic reliefs are determined to positively correlate with longitudinal transition angles. These high topographic reliefs may indicate the propensity of triangular slab erosion, rather than strip-shaped slab erosion, in non-uniform channels with relatively steep erodible beds. Empirical formulas are obtained that denote the relationships among bed sediment strength, channel curvature radius, and sediment porosity through a multi-parameter regression analysis. This study may aid in clarifying the complex coupling effects of spatial variations in debris flow dynamics as well as sediment erodibility and bed morphology in non-uniform channels with abundant seismic loose material.

  相似文献   

20.
PAUL D. KOMAR 《Sedimentology》1987,34(6):1165-1176
The concept of flow competence is generally employed to evaluate velocities and bed stresses of river floods from the sizes of the largest sediment particles transported. For the most part, this evaluation has been empirical, combining data from a number of separate flood events in different river systems. Those data are re-examined and compared with empirical equations for the selective entrainment of gravel from deposits of mixed sizes. It is found that the competence relationships trend counter to those obtained for selective entrainment, indicating that the competence evaluations are affected by varying degrees of selective size entrainment. Individual data sets which have been employed to establish the flow-competence relationships either show no trend on their own or yield a trend which runs counter to the competence equation, instead being more compatible with the selective-entrainment relationships. In most instances, the empirical competence equations greatly overestimate the hydraulics of flood flows, and it is suggested that the better established selective entrainment equations be used for competence evaluations as well. Empirical equations are available for this purpose, relating the dimensionless Shields entrainment function or the bed shear stress to the diameter of the largest grain moved and to the median diameter of the deposit as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号