首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In damage‐based seismic design it is desirable to account for the ability of aftershocks to cause further damage to an already damaged structure due to the main shock. Availability of recorded or simulated aftershock accelerograms is a critical component in the non‐linear time‐history analyses required for this purpose, and simulation of realistic accelerograms is therefore going to be the need of the profession for a long time to come. This paper attempts wavelet‐based simulation of aftershock accelerograms for two scenarios. In the first scenario, recorded main shock and aftershock accelerograms are available along with the pseudo‐spectral acceleration (PSA) spectrum of the anticipated main shock motion, and an accelerogram has been simulated for the anticipated aftershock motion such that it incorporates temporal features of the recorded aftershock accelerogram. In the second scenario, a recorded main shock accelerogram is available along with the PSA spectrum of the anticipated main shock motion and PSA spectrum and strong motion duration of the anticipated aftershock motion. Here, the accelerogram for the anticipated aftershock motion has been simulated assuming that temporal features of the main shock accelerogram are replicated in the aftershock accelerograms at the same site. The proposed algorithms have been illustrated with the help of the main shock and aftershock accelerograms recorded for the 1999 Chi–Chi earthquake. It has been shown that the proposed algorithm for the second scenario leads to useful results even when the main shock and aftershock accelerograms do not share the same temporal features, as long as strong motion duration of the anticipated aftershock motion is properly estimated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Wavelet-based generation of spectrum-compatible time-histories   总被引:6,自引:0,他引:6  
This paper deals with the well-known problem of generating spectrum-compatible synthetic accelerograms for the linear and non-linear time-history analyses of structural systems. A wavelet-based procedure has been used to decompose a recorded accelerogram into a desired number of time-histories with non-overlapping frequency contents, and then each of the time-histories has been suitably scaled for matching of the response spectrum of the revised accelerogram with a specified design spectrum. The key idea behind this iterative procedure is to modify a recorded accelerogram such that the temporal variations in its frequency content are retained in the synthesized accelerogram. The proposed procedure has been illustrated by modifying five recorded accelerograms of widely different characteristics such that those are compatible with the same USNRC design spectrum.  相似文献   

3.
本文详细地分析了强震加速度记录的数字化噪声。分析表明:数字化噪声由数字化设备的系统误差和操作者的随机读数误差迭加而成,随机数字化误差是具有各态历经性质的,其振幅按高斯规律分布的平稳随机过程,在其频谱组成中,长周期分量占明显的优势,因此将对二次积分加速度记录的位移曲线产生严重的影响。 研究表明:随机数字化噪声位移主要分布在周期大于25秒的频段,对加速度记录来说,分布在周期小于25秒的频段内,其随机噪声是相当小的(假定记录纸速为1厘米/秒)。因此,利用数字滤波技术,可以除去数字化加速度记录中的大部份随机数字化噪声。 作为实例,对一个典型的强震加速度记录进行了滤波,给出了低噪声的加速度记录和由此算出的位移曲线,且和未经滤波的相应记录及其位移进行了比较。   相似文献   

4.
The inelastic seismic response behaviour for a range of simplified single-degree-of-freedom models has been analysed using 180 random phase angle synthetic accelerograms with different frequency contents and different durations and 105 real accelerograms collected from different regions worldwide. Results from the analyses have identified that the frequency content of the excitation can greatly influence the ductility demand ratio due to inelastic amplification effects. Consequently, results derived from intraplate earthquake records (typically of higher frequency content) were generally different to those from interplate records. However, the commonly used El Centro accelerogram has significantly lower ductility demand in the low period range than the average of records with similar elastic response spectral shape. Apart from this, there was little evidence to suggest any inherent differences in the inelastic response behaviour of buildings from intraplate and interplate earthquakes which possessed similar frequency content. Thus, the average ductility demand ratios from future earthquakes in an area can be predicted by interpolation of the results presented in this paper assuming the elastic response spectrum has been defined. Ductility demand ratios derived from the synthetic accelerograms and the real accelerograms with similar frequency content have been shown to be consistent. However, results from synthetic records derived for the idealised code design spectra (such as the Uniform Building Code and the Australian Standard AS1170.4) indicate a significantly higher ductility demand in the long period range.  相似文献   

5.
In this paper, the method presented by Lee and Trifunac (1985) for generating synthetic torsional accelerograms has been extended to the estimation of synthetic rocking accelerograms and of their response spectra. Results from our previous regression analyses for the characterization of strong shaking in terms of (1) earthquake magnitude and epicentral distance, or (2) Modified Mercalli Intensity at the site are utilized here again. The effects of geologic environment, in terms of site parameters or the representative depth of sediments, which influence amplification, and the dispersive properties of ground motion are also included. The synthetic rocking accelerogram is then constructed from the horizontal and vertical acceleration components.  相似文献   

6.
For the seismic analysis of complex or nonlinear extended structures, it is useful to generate a set of properly correlated earthquake accelerograms that are consistent with a specified seismic hazard. A new simulation approach is presented in this paper for the generation of ensembles of spatially correlated accelerograms such that the simulated motions are consistent with (i) a parent accelerogram in the sense of temporal variations in frequency content, (ii) a design spectrum in the mean sense, and (iii) with a given instantaneous coherency structure. The formulation is based on the extension of stochastic decomposition technique to wavelet domain via the method of spectral factorization. A complex variant of the modified Littlewood-Paley wavelet function is proposed for the wavelet-based representation of earthquake accelerograms, such that this explicitly brings out the phase information of the signal, besides being able to decompose it into component time-histories having energy in non-overlapping frequency bands. The proposed approach is illustrated by generating ensembles of accelerograms at four stations.  相似文献   

7.
基于小波变换的拟合规范反应谱多维地震动模拟   总被引:1,自引:0,他引:1  
本文提出一种基于小波变换的拟合规范反应谱的多维地震动模拟算法。首先将规范反应谱推广到三维相关设计反应谱,然后将已有的三维地震动加速度时间历程曲线分解为一系列不同频段上的地震动分量,调整每一个地震动分量的幅值使其在相应的频率范围内拟合设计反应谱,最后经过调整后的地震动分量进行重构得到更新的地震动时间历程曲线。将该时间历程曲线的反应谱与目标反应谱进行比较,重复该过程直到误差位于特定的范围内。该方法可以保留原始地震动的局部时-频特性,为多维地震动的模拟提供了一种新的方法。  相似文献   

8.
李福民 《地震学报》1982,4(3):301-307
本文用数值积分法,对RDZ1-12-66型自动触发电流计记录式强震仪的幅频响应失真进行校正。并采用高通数字滤波的方法,修正加速度图的零线.为此编制了计算机程序,绘制了修正后的加速度、速度和位移时程曲线.计算了修正前后加速度图的傅氏谱。同时,对这些结果加以讨论。 修正后的加速度图,精确地表示了仪器基本频带在0.09HZ和25HZ之间的绝对地面加速度。   相似文献   

9.
This paper deals with the generation of seismic accelerograms which are compatible with a given response spectrum and other design specifications. The time sampling of the stochastic accelerogram yields a time series represented by a random vector in high dimension. The probability density function of this random vector is constructed using the maximum entropy (MaxEnt) principle under constraints defined by the available information (design specifications). In this paper, an adapted algorithm is proposed to identify the Lagrange multipliers introduced in the MaxEnt principle to take into account the constraints. This algorithm is based on (1) the minimization of an appropriate convex functional and (2) the construction of the probability distribution defined as the invariant measure of an Itô stochastic differential equation in order to estimate the integrals in high dimension of the problem. The constraints related to a seismic accelerogram are developed explicitly. This methodology is validated through an application for which the available information is related to the variance of each component of the random vector representing the accelerogram, statistics on the response spectrum, on the peak ground acceleration, on the cumulative absolute velocity and on the end-values for the velocity and for the displacement.  相似文献   

10.
用集集主震记录研究近断层强震记录的基线校正方法   总被引:2,自引:0,他引:2  
从集集主震记录中选取有代表性的246个台站的记录作为数据集。在总结国内外基线校正方法的基础上,提出以下校正步骤:(1)初步判定记录中是否包含永久位移信息以便选用不同的校正方法。(2)以积分位移时程的末端平稳为标准,来确定积分速度时程末端拟合出的最优直线斜率作为校正量,去校正原始加速度时程,从而保留永久位移信息。永久位移等值线结果与GPS测量结果大体相符。根据校正结果推测认为:瞬变后保持或扩张或部分回弹,可能是决定永久位移形态的主要物理机制。  相似文献   

11.
A procedure is developed for the simulation of artificial earthquake accelerograms, The time variation of amplitude and frequency content is preserved in the simulation procedure. Sixteen artificial earthquake accelerograms are simulated and compared with a target accelerogram. The time variation of amplitude and frequency content for 26 historical earthquake accelerograms is characterized.  相似文献   

12.
It is demonstrated that the difference in phase content between orthogonal, horizontal, accelerograms can directly influence the effective (band‐limited) torque energy applied to a plan asymmetric structure. This is not the case where a plan asymmetric structure is excited solely by a unidirectional, horizontal, accelerogram ground motion. It is shown that this effective torque energy is well correlated with building torsional (response) acceleration energy and element ductility demands for a broad class of multistorey structures. Nonlinear time‐history analyses employing a database of accelerogram abstracted from USGS are used to quantify the influence of the phase difference content on these building responses. Bias in nonlinear time‐history analyses based on a small sample of accelerograms caused by phase difference content is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A wave type based method for real-time prediction of strong ground motion (SGM) accelerogram is developed. Real-time prediction of SGM is requested in predictive building control systems to trigger and control actuator systems achieving the goal of reduction of the structural deformations during an on-going earthquake. It is well known that SGM is a classic example of non-stationary stochastic process with temporal variation of both amplitude and frequency content. The developed non-parametric model considers the non-homogeneity of the seismic process which contains different wave types with the individual frequency contents and time-dependency amplitude distribution pattern. Therefore, an important part of the method is to detect dominant seismic wave phases. Prediction of seismic signal is undertaken by applying frequency adaptive windowing approach, which leads to predict the on-coming signal in time window tt based on the measured data in the time window t. Besides use of the frequency adaptive windowing, constant windowing and semi-adaptive windowing approaches are deployed. The results show that use of the adaptive time windows relevant to dominant frequency of the signal will enable the model to catch and predict the most dominant frequencies. Performance of the proposed model is verified by the use of 97 free-field accelerograms, which were applied to train and validate the prediction model. The selected accelerograms were measured above the soil type C and D according Eurocode 8 and their Moment magnitude are ranging between 6.2 and 7.7. The learning capability of the radial basis function Artificial Neural Network is used to reconstruct the SGM accelerogram. The most significant advantage of the proposed model is the concept of wave type based modeling which has the advantage of a conceptual physical modeling of the seismic process. Comparison of the real-time predicted and the observed accelerograms shows a high correlation when the frequency adaptive approach is applied. This paper lays a foundation for more effective use of real-time predictive control systems and potential for future extension in active structural control as well as in real-time seismology.  相似文献   

14.
Using records from co‐located broadband and digital strong motion (SM) instruments, it is first shown that the displacement waveforms obtained by double integration of the accelerogram need not be free of unrealistic baseline drift to yield reliable spectral ordinates up to at least 10 s. Secondly, to provide objective criteria for selecting reliable digital SM records for ground motion predictions at long periods, a set of synthetic accelerograms contaminated by random long‐period noise has been used, and the difference between the original accelerograms and the spurious ones in terms of response spectra has been quantified, by introducing a noise index that can be easily calculated based on the velocity waveform of the record. The results of this study suggest that high‐pass filtering the digital acceleration record from a cutoff period selected to suppress baseline drifts on the displacement waveform appears to be in most cases too conservative and unduly depletes reliable information on long‐period spectral ordinates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A new method is proposed for generating artificial earthquake accelerograms from response spectra. This method uses the learning capabilities of neural networks to developed the knowledge of the inverse mapping from the response spectra to earthquake accelerogram. In the proposed method the neural networks learn the inverse mapping directly from the actual recorded earthquake accelerograms and their response spectra. A two-stage approach is used. In the first stage, a replicator neural network is used as a data compression tool. The replicator neural network compresses the vector of the discrete Fourier spectra of the accelerograms to vectors of much smaller dimension. In the second stage, a multi-layer feed-forward neural network learns to relate the response spectrum to the compressed Fourier spectrum. A simple example is presented, in which only 30 accelerograms are used to train the two-stage neural networks. This example demonstrates how the method works and shows its potential. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
The seismic ground rotations are important with respect to spatial structural models, which are sensitive to the wave propagation. The rotational ground motion can lead to significant increasing of structural response, instability and unusual damages of buildings. Currently, the seismic analyses often take into account the rocking and torsion motions separately using artificial accelerograms. We present an exact analytical method, proposed by Nazarov [15] for computing of three rotational accelerograms simultaneously from given translational records. The method is based on spectral representation in the form of Fourier amplitude spectra of seismic waves, corresponding to the given three-component translational accelerogram. The composition, directions and properties of seismic waves are previously determined in the form of a generalized wave model of ground motion. It is supposed that seismic ground motion can be composed by superposition of P, SV, SH- and surface waves. As an example, the dynamic response analysis of 25-story building is presented. Here recorded (low-frequency) and artificial (high-frequency) accelerograms were used; each of them includes three translational and three rotational components. In this structural analysis, we have clarified primarily conditions under which rotational ground motion should be taken into account. Next, we have calculated three rotational components of seismic ground motion. Then they were taken as additional seismic loads components for further seismic analysis of the building. Note, soil–structure interaction (SSI) is not considered in this study. For computing, we use the special software for structural analyses and accelerogram processing (FEA Software STARK ES and Odyssey software, Eurosoft Co., Russia). It was developed and is used in engineering practice in the Central Research Institute of Building Constructions (TsNIISK, Moscow, Russia).  相似文献   

17.
This paper deals with the problem of generating spectrum-compatible artificial accelerograms for seismic dynamic analysis of engineering projects. A wavelet-packet-based, two-step procedure for the issue is proposed. The first step is to generate acceleration time history that could account for temporal and frequency non-stationarities of recorded ground motions. The second step is to decompose it into a desired number of wavelet packet vectors with high frequency resolution and non-overlapping frequency contents. Then each wavelet packet vector is scaled suitably and iteratively for the response spectrum of the simulated accelerogram to fit a specified design spectrum. The advantages of this procedure are that it can simulate user-specified acceleration time history with only 6 input parameters and the adjusted accelerogram has similar characteristics to the recorded one. The proposed procedure has been illustrated by simulating and modifying acceleration time history that are compatible with two different design spectrums for nuclear power plants. In addition, iterative efficiency of the method is investigated by simulating and adjusting acceleration time history for 100 successive times. The maximum relative error of the 76 period control points can reach 6% or below. Results show that the proposed method is effective and practical to generate and find spectrum-compatible ground motions with both stochastic and deterministic aspects.  相似文献   

18.
简要评述了现有强震记录仪器响应失真校正方法的优点和存在的不足。在文献[1]的基础上,提出了对强震记录进行仪器响应失真校正的权函数方法,并推导建立了相应的计算公式。通过设计真实地震动为已知的算例,对加速度摆和速度摆强震仪的未校正记录,和用不同方法获得的校正记录的精度(或误差)进行了对比分析。理论和算例分析表明,本文方法简单、实用,具有很高的计算机精度且无稳定性问题。  相似文献   

19.
The out‐of‐plane response of walls in existing stone masonry buildings is one of the major causes of vulnerability commonly observed in post‐earthquake damage surveys. In this context, a shaking table (ST) test campaign was carried out on a full‐scale masonry façade mainly focusing on the characterization of its out‐of‐plane overturning behaviour. The structure tested on the ST is a partial reproduction of an existing building from Azores, damaged during the 9 July 1998 Faial earthquake. The definition of the tested specimen as well as the selection of the input ground motion is reported in this paper. A specific emphasis is given to the definition of the time‐history to be applied during the tests because it was felt as an essential and crucial part of the work to obtain the desired overturning behaviour. The accelerogram to be imposed was selected from a large set of accelerograms (74) by means of a step‐by‐step procedure on the basis of several numerical analyses resorting to the rocking response of rigid blocks. A companion paper (Part 2) focuses on the ST test results and detailed data interpretation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Selecting, scaling and matching accelerograms are critically important to engineering design and assessment, enabling structural response to be determined with greater confidence and through fewer analyses than if unscaled accelerograms are employed. This paper considers the response of an 8‐storey multiple‐degree‐of‐freedom reinforced concrete structure to accelerograms selected, linearly scaled or spectrally matched using five different techniques. The first method consists of selecting real records on the basis of seismological characteristics, while the remaining methods make an initial selection on the basis of magnitude and spectral shape before (1) scaling to the target spectral acceleration at the initial period; (2) scaling to the target spectrum over a range of periods; (3) using wavelet adjustments to match the target spectrum and (4) using wavelet adjustments to match multiple target spectra for multiple damping ratios. The analyses indicate that the number of records required to obtain a stable estimate of the response decreases drastically as one moves through these methods. The exact number varies among damage measures and is related to the predictability of the damage measure. For measures such as peak roof and inter‐storey drift, member end rotation and the Park and Ang damage index, as few as one or two records are required to estimate the response to within ±5% (for a 64% confidence level) if matching to multiple damping ratios is conducted. Bias checks are made using predictive equations of the expected response derived from the results of 1656 nonlinear time‐domain analyses of the structure under the action of unscaled accelerograms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号