首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic analysis of a reactor building on a sliding-type base isolation is performed by way of the hybrid frequency-time-domain procedure. The frequency dependence of the foundation stiffness coefficients is duly accounted for in the analysis, although the problem is non-linear. The response results are shown to be reliable by way of comparison with the results of a time-stepping algorithm in the specialized case of constant foundation stiffness coefficients. The fact that such an analysis can be performed is an outstanding result, particularly when considering that no difficulties are encountered in the implementation and in the calculation. The flow chart used to implement the procedure is presented in the paper. The reactor building is analysed for three different sites with each site having three sets of material properties. It appears that the structural response is not strongly affected by the frequency dependence of the foundation stiffness coefficients. This also holds true as far as the response of equipment attached to the superstructure is concerned. For all practical purposes this frequency dependence may be disregarded in favour of constant spring and damping coefficients.  相似文献   

2.
With a simplified model and Galerkin's weighted residual procedure, two simple differential equations of dynamic behavior of a bounded rectangular medium are established along the boundaries in the x- and y-direction in the medium. Solutions of these equations yield closed form expressions of soil stiffnesses for various cases of a partially embedded rigid foundation, including the stiffnesses per depth of foundation with rectangular base area and the stifnesses of strip foundation. The developed procedure provides the definition of the weight functions, which are used in Galerkin's method for weighted residual. In addition to these weight functions, their conjugators are also suitable for weight functions. When the soil depth is finite, the original weight functions fail to produce physically meaningful results in some frequency range but the conjugators do not fail at any frequencies. The developed equations to compute soil stiffnesses for embedded foundations are simple yet capable of calculating the responses close to those computed by the much more elaborated finite element method.  相似文献   

3.
系统地研究了双线性单自由度体系在简谐波输入下表现出非线性力学行为时,输入简谐波频率对体系动力响应的Hilbert谱、Hilbert边缘谱及Fourier幅值谱的影响.研究结果表明,如果体系输入简谐波频率为f,那么体系动力响应Hilbert边缘谱的能量分布在f附近一个较宽的频带上,该频带的产生是体系动力响应Hilbert谱中所蕴含的波内调制的必然结果,它源自于体系某个本征振动模态瞬时频率的波动,而这种瞬时频率的波动描述了体系屈服与卸载的非线性力学行为;体系动力响应的Fourier幅值谱自3f起,每隔2f就会出现一个幅值明显高出周围其它分量的Fourier“伪”谐波分量,这也是体系非线性力学行为所造成的结果.  相似文献   

4.
The paper presents a model describing the evolution of the effective stiffness of a ‘mode’ of a structure subjected to an earthquake engaging it in its non-linear phase of behaviour. Such models are available in the literature; however, the proposed one allows the estimation of the effective stiffnesses both of the virgin state of the structure and of its ultimate state, even when the excitation considered does not act on an undamaged system nor leads it to ultimate conditions. Only the base input and the response at a significant location of the structure need to be known to apply the procedure. This is satisfactorily checked against the results of shaking table tests performed on masonry buildings.  相似文献   

5.
6.
近场地震下竖向刚度不同的混合结构动力性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
近场地震的动力特性明显不同于远场地震,因此有必要对结构在近场地震作用下的动力性能展开研究。以上部钢结构-下部混凝土结构这类竖向刚度不同的加层混合结构为研究对象,对其在近场脉冲型地震、近场无脉冲型地震及远场地震作用下的动力响应进行研究。结果表明:在多遇、设防、罕遇地震作用下,近场脉冲型地震会使结构的层间位移角、层间剪力、加速度等动力响应均放大并出现超限的情况,而且都比罕遇地震作用下结构的响应增大更明显;在进行近场区加层混合框架结构的设计和建设时,近场脉冲效应会使结构存在不满足规范的情况,有必要对竖向刚度不同的加层混合结构在近场区的适用性进行深入研究。  相似文献   

7.
Soil-structure interaction analysis is usually carried out in the frequency domain, because the compliance functions of the half-space are known only in the frequency domain. Since non-linear analysis cannot be carried out in the frequency domain, a system with frequency independent parameters is used to represent the half-space soil medium so that a nonlinear analysis in the time domain becomes possible. The objective of this paper is to propose a system with lumped parameters, which are independent of frequency, to represent the half-space soil medium. The proposed frequency independent system consists of a number of real discrete structure elements; thus the existing dynamic analysis programs may be adoptable with little modification. In this paper, the parameters are found by minimizing the sum of the squares of deviations between the steady-state responses of the theoretical half-space model and those of the lumped parameter system over a specified frequency range. Once the parameters have been found, the lumped parameter system can be used in practical applications for time domain dynamic analysis of either linear or non-linear structures. In comparison with the dynamic response of the theoretical half-space model, the lumped parameter system yields satisfactory results.  相似文献   

8.
9.
Methods that combine frequency and time domain techniques offer an attractive alternative for solving Soil–Structure-interaction problems where the structure exhibits non-linear behaviour. In the hybrid-frequency-time-domain procedure a reference linear system is solved in the frequency domain and the difference between the actual restoring forces and those in the linear model are treated as pseudo-forces. In the solution scheme explored in this paper, designated as the hybrid-time-frequency-domain (HTFD) procedure, the equations of motion are solved in the time domain with due consideration for non-linearities and with the unbounded medium represented by frequency-independent springs and dampers. The frequency dependency of the impedance coefficients is introduced by means of pseudo-forces evaluated in the frequency domain at the end of each iteration. A criterion of stability for the HTFD approach is derived analytically and its validity is sustained numerically. As is often the case, the criterion takes the form of a limit of unity on the spectral radius of an appropriately defined matrix. Inspection of the terms in this matrix shows that convergence can be guaranteed by suitable selection of the reference impedance. The CPU times required to obtain converged solutions with the HTFD are found, in a number of numerical simulations, to be up to one order of magnitude less than those required by the alternative hybrid-frequency-time-domain approach. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A study of the effects of soil-pile-structure interaction on the response of rotational shell structures supported by a group of vertical piles is presented. The interaction effects are included in the dynamic analysis through the development of a frequency dependent boundary system at the interface between the shell and the underlying foundation. The substructure method is used to simplify the connection problem between the shell and the pile foundation. A free vibration analysis of a cooling tower is carried out to investigate the dynamic properties of rotational shells with four different foundation stiffnesses. The effects of soil-pile-structure interaction on the response in the shell are demonstrated by a complex response analysis of a cooling tower.  相似文献   

11.
12.
Experimental and analytical studies were conducted to determine dynamic soil–structure interaction characteristics of a single-span, prestressed-concrete bridge with monolithic abutments supported by spread footings. The experimental programme, consisting of harmonic forced vibration excitation of the bridge in the transverse and longitudinal directions, revealed the presence of four modes in the frequency band, 0 to 11 Hz, and the onset of a fifth mode at 14 Hz, the highest frequency attained during the tests. The fundamental mode at 4.7 Hz was the primary longitudinal bending mode of the deck and had a relatively low damping ratio (ζ1), that was approximately 0.025 of critical. The second and third modes at 6.4 Hz and 8.2 Hz were the primary twisting modes of the deck which involved substantial transverse rocking, transverse translation and torsion of the footings. As expected, the damping ratios associated with these two modes, ζ2 = 0.035 and ζ3 = 0.15, were directly related to the relative amounts of deck and footing motion. The fourth mode at 10.6 Hz was the second twisting mode of the deck and involved relatively little motion of the footings and abutment walls, which was consistent with the low damping, ζ4 = 0.02, observed in this mode. The response data at 14 Hz suggested that the fifth mode beyond this frequency was the second longitudinal bending mode of the deck involving longitudinal translation and bending of the abutment walls. A three-dimensional finite element model of the bridge, with Winkler springs attached to the footings and abutment walls to represent the soil–structure interaction, was able to reproduce the experimental data (natural frequencies, mode shapes and bridge response) reasonably well. Although the stiffnesses assigned to the Winkler springs were based largely on the application of a form of Rayleigh's principle to the experimental data, these stiffnesses were similar to theoretical foundation stiffnesses of the same size footings on a linearly elastic half space and theoretical lateral stiffnesses of a rigid retaining wall against a linearly elastic backfill.  相似文献   

13.
Non-linear seismic soil-structure interaction is studied through a hybrid procedure using the pseudo-dynamic testing (PDT) method which is modified to take into account frequency dependence and developed for foundation-soil systems. The numerical scheme used in conventional PDT is improved by introduction of a time-dependent pseudo-forcing function which is derived from frequency-dependent dynamic characteristics of the system by means of Hilbert transformation in the frequency domain. Surface, shallow and caisson foundation models that differed in size and depth of embedment were used. The mechanical characteristics of the systems were determined from static and forced vibration dynamic tests. An amplitude scaling technique was used for three recorded accelerograms.  相似文献   

14.
Based on an incremental Hamilton's principle a versatile and systematic computer method for analysing non-linear structural vibrations is developed in this paper. The essence of the proposed method can be regarded as an incremental harmonic balance method associated with a finite strip procedure in the time-space domain. Only linearized equations in terms of frequency increment, amplitude increments, etc. have to be formulated and solved in each incremental step. This method is applicable to highly non-linear problems and may be generalized to related non-linear periodic structural motions such as dynamic stability, flutter and some motions of a rotating body, etc. To show the effectiveness and versatility of this method, a typical time-space finite strip for beam problems is worked out and examples for a wide variety of vibration problems including free and forced vibrations, super- and sub-harmonic resonances, and complicated phenomena such as internal resonance are computed. Comparisons with previous results are also made.  相似文献   

15.
A shear building supported by a prescribed pile–soil system is subjected to bedrock earthquake input. A new design procedure is presented for generating a sequence of stiffness designs satisfying the constraints on interstorey drifts. The mean peak interstorey drifts of the shear building subjected to a set of spectrum-compatible ground motions at the bedrock are evaluated by a modal combination rule. Tuning of the fundamental natural period of a shear building with a fixed base with that of a shear beam ground results in a non-monotonic sequence of stiffness designs with respect to a ground stiffness parameter and previous approaches cannot be applied to such a problem. This difficulty in finding such a non-monotonic sequence is overcome by utilizing the ground stiffness parameter and the superstructure stiffness parameter alternately in multiple design phases and by developing a new multi-phase perturbation technique. Fundamental characteristics of this sequence of stiffness designs and the effect of ground stiffnesses on the design of the shear building are disclosed. It is further shown that the stiffness contour method is also useful for the design procedure such that a scattering effect in the estimates of ground stiffnesses is taken into account. The usefulness of the proposed procedure of sequential stiffness design and contour line method is demonstrated through several sequential design examples.  相似文献   

16.
为减少直接分析三维大尺度复杂土-结构动力相互作用问题的计算量,提高计算效率,本文直接从波动方程出发,提出了较常规子结构法更简单的两步简化计算过程,即第一步简化上部复杂结构体系为集中质量杆系模型,并求基础处等效输入,第二步通过等效输入求上部结构各位置的动力反应.其中第一步计算主要采用集中质量显式有限单元法结合局部透射人工...  相似文献   

17.
A systematic method is developed for the dynamic analysis of the structures with sliding isolation which is a highly non-linear dynamic problem. According to the proposed method, a unified motion equation can be adapted for both stick and slip modes of the system. Unlike the traditional methods by which the integration interval has to be chopped into infinitesimal pieces during the transition of sliding and non-sliding modes, the integration interval remains constant throughout the whole process of the dynamic analysis by the proposed method so that accuracy and efficiency in the analysis of the non-linear system can be enhanced to a large extent. Moreover, the proposed method is general enough to be adapted for the analysis of the structures with multiple sliding isolators undergoing independent motion conditions simultaneously. The superiority of the proposed method for the analysis of sliding supported structures is verified by a three-span continuous bridge subjected to harmonic motions and real earthquakes. In addition, the side effect of excessive displacement of the superstructure induced by the sliding isolation is eliminated by replacing one of the roller supports on the abutments with hinge support. Therefore, both reductions in the forces of the substructure and the displacements of the superstructure can be achieved simultaneously. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. This paper discusses those procedures that have been implemented into the latest European and US seismic provisions: non-linear dynamic time-history analysis; N2 non-linear static method (Eurocode 8); non-linear static procedure NSP (FEMA 356) and improved capacity spectrum method CSM (FEMA 440). The presented methods differ in respect to accuracy, simplicity, transparency and clarity of theoretical background. Non-linear static procedures were developed with the aim of overcoming the insufficiency and limitations of linear methods, whilst at the same time maintaining a relatively simple application. All procedures incorporate performance-based concepts paying more attention to damage control. Application of the presented procedures is illustrated by means of an example of an eight-storey reinforced concrete frame building. The results obtained by non-linear dynamic time-history analysis and non-linear static procedures are compared. It is concluded that these non-linear static procedures are sustainable for application. Additionally, this paper discusses a recommendation in the Eurocode 8/1 that the capacity curve should be determined by pushover analysis for values of the control displacement ranging between zero and 150% of the target displacement. Maximum top displacement of the analyzed structure obtained by using dynamic method with real time-history records corresponds to 145% of the target displacement obtained using the non-linear static N2 procedure.  相似文献   

19.
Non-linear seismic soil-pile interaction was studied with a hybrid procedure that used a pseudo-dynamic testing (PDT) method modified to account for frequency dependence and developed for foundation-soil systems. The numerical scheme used in the conventional PDT was improved by the introduction of a time-dependent pseudo-forcing function derived from the frequency-dependent dynamic characteristics of the system by Hilbert transformation in the frequency domain. Single, 2-, 3- and 9-pile group foundation models were used, their mechanical characteristics later being determined from static and forced vibration dynamic tests. Amplitude scaling was used for three recorded accelerograms. Data recorded during an earthquake at the site of the experiments revealed that the proposed methodology predicts well seismic nonlinear interaction and accounts for frequency dependence and non-linearity in the time domain.  相似文献   

20.
This paper presents an effective analysis procedure for the dynamic soil-structure interaction problem considering not only the sliding and separation phenomena but also the non-linear behaviour of soil by the finite element method. Soil is assumed to be an elasto-plastic material and the contact surface between the soil and structure is modelled by the joint element. The load transfer method is adopted to carry out dynamic non-linear response analysis. The method is applied to the response analysis of a nuclear reactor building resting on the ground surface. The effects of non-linear behaviour of soil on the safety against sliding of the structure are examined. The numerical computations reveal the following results: that the non-linear behaviour of soil reduces the response of the system and the magnitude of sliding of the structure, and that the safety against sliding obtained by the proposed method is higher than the safety obtained by classical methods. This implies the possibility of a more rational and economical design of large structures; it can be said that the proposed method provides useful information for the stability analysis of important and large structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号