首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper investigates the incipience of shear band with an incrementally non‐linear constitutive equation. Necessary conditions for the emergence of shear band are derived. The lower bound solution is obtained by taking the strain rate inside and outside the shear band into consideration. Numerical results of localized bifurcation for general stress and strain are presented and compared with experiments. In the principal stress space, the stresses at the onset of shear band form a surface, which is partially enclosed by the failure surface for homogeneous straining. The significance of the analysis for identification of the material parameters and verification of the constitutive model against experiments is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Modelling shear band is an important problem in analysing failure of earth structures in soil mechanics. Shear banding is the result of localization of deformation in soil masses. Most finite element schemes are unable to model discrete shear band formation and propagation due to the difficulties in modelling strain and displacement discontinuities. In this paper, a framework to generate shear band elements automatically and continuously is developed. The propagating shear band is modelled using discrete shear band elements by splitting the original finite element mesh. The location or orientation of the shear band is not predetermined in the original finite element mesh. Based on the elasto‐perfect plasticity with an associated flow rule, empirical bifurcation and location criteria are proposed which make band propagation as realistic as possible. Using the Mohr–Coulomb material model, various results from numerical simulations of biaxial tests and passive earth pressure problems have shown that the proposed framework is able to display actual patterns of shear banding in geomaterials. In the numerical examples, the occurrence of multiple shear bands in biaxial test and in the passive earth pressure problem is confirmed by field and laboratory observations. The effects of mesh density and mesh alignment on the shear band patterns and limit loads are also investigated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Bifurcation of unsaturated soils into a localized shear band is a ubiquitous failure mode of partially saturated soils. The density and degree of saturation have major impacts on the inception of localized deformations in unsaturated soils. Unsaturated fluid flow may dramatically change the density and degree of fluid saturation of unsaturated soils. Therefore, the unsaturated fluid flow is a potential trigger for shear banding in such materials. In this paper, we derive a simplified bifurcation condition of localized deformation in unsaturated soils under the local transient condition at finite strain. This transient bifurcation condition is implemented into a nonlinear finite element code to study the inception of localized deformation in unsaturated soil specimens. Numerical simulations are conducted to study the impact of soil fabrics of density, a ‘bonding’ variable, and intrinsic permeability on the inception of localized failures via the transient bifurcation criterion. Mesh sensitivity analysis is performed to demonstrate the viscosity effect of unsaturated fluid flow on the localized deformation. Numerical simulations demonstrate that the transient bifurcation condition can detect the localized deformation triggered by the internal unsaturated fluid flow process in unsaturated soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The spontaneous shear band formation in the biaxial test on dry sand samples with constant cell pressure is treated as a bifurcation problem. The constitutive response of sand is described in terms of mobilized friction and dilatancy. Dilatancy is looked upon as an internal constraint and the hardening rule is expressed in terms of an adequate dimensionless stress measure. Owing to fail of normality in sand, localization always occurs in the hardening regime. The theoretical solution of the shear band inclination is a geometrical mean of the classical Coulomb and Roscoe solutions and is in good agreement with the experimental data. The incipient shear modulus is proportional to the stress level and can be estimated to be also proportional to these cant modulus.  相似文献   

5.
Undrained deformation of dilative sand generates negative excess pore pressure. It enhances the strength, which is called dilative hardening. This increased suction is not permanent. The heterogeneity at the grain scale triggers localisations causing local volume changes. The negative hydraulic gradient drives fluid into dilating shear zones. It loosens the soil and diminishes the shear strength. It is essential to understand the mechanism behind this internal drainage and to capture it numerically. The purpose of this paper is to develop a macroscopic constitutive relationship for the undrained deformation of saturated dense sand in the presence of a locally fully or partially drained shear band. Separate constitutive relations are generated for the band and intact material. Both time and scale dependence during pore fluid diffusion in saturated sand are captured, eliminating the mesh dependency for finite element implementations. The model is applied to the Gauss points that satisfy the bifurcation criterion. The proposed method is calibrated to recreate the undrained macroscopic response bestowed by an extra-small mesh. The microscopic behaviours inside and outside shear band predicted by this model are qualitatively in good agreement with individual material point behaviours inside and outside the shear band in the extra-small mesh. Depending on the loading rate and the shear band thickness, the response inside the band can be fully or partially drained, which governs the ultimate global strength. The calibrated model is exploited to simulate an upscaled biaxial compression test with semipermeable boundaries.  相似文献   

6.
A simplified method to analyse diffuse and localized bifurcations of sand under drained and undrained conditions is presented in this paper. This method utilizes results from bifurcation analysis and critical state plasticity theory to detect the onset of pure and dilatant shear band formation, static liquefaction and drained shear failures systematically. To capture the soil collapse observed in experiments, the instability state line concept originated by Chu, Lo and Lee in 1993 is adopted. Emphasis is given to examine how the presence of pore-fluid may facilitate or delay instability after yielding occurs. The predictions of instabilities are compared with experimental data from triaxial compression tests on Toyoura and Changi sands.  相似文献   

7.
In this paper, the internal structure of shear band is investigated, and a model of the shear band with an echelon crack structure is developed. The model assumes the shear band to be composed of two conjugate sets of echelon cracks, such that the smaller echelon cracks are embedded in the space of the larger ones. The additional strain induced by the echelon cracks and the anisotropic development of the compliance tensor in the shear band zone are analyzed. The critical crack density at the onset of shear band is obtained by applying the bifurcation condition. Deviating from previous approaches, the new procedure evaluates the thickness of shear band based on the geometrical characteristics of echelon crack arrays and the failure probability of grain boundaries in the longitudinal direction at the onset of shear band. Parametric analysis shows that grain size, internal friction angle, dilation angle, and failure probability of grain boundaries are the dominant factors that account for the shear band thickness. The calculated results are consistent with the experimental data available in the literature. The model soundly explains that the measurements of the shear band thickness are generally scattered, ranging from 4 to 30 (or even more) times the grain size. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
基于图像相关分析的土体剪切带识别方法   总被引:4,自引:1,他引:3  
提出了一种基于数字照相量测和图像相关性分析技术的土体剪切带识别方法。首先,在模型试验中,用数码相机采集土体全程变形图像序列;接着,在图像全局观测范围内粗略搜索到剪切带发生的大致区域;然后,布置跨越剪切区域的多对测点线,进行局部范围精密搜索,识别出剪切带的准确位置与形状, 并确定剪切带的边界点。与在模型上描画网格线等传统方法相比,该法操作简单,量测准确,适用于模型试验中岩土材料的剪切带识别及其厚度、倾角、带内变形和演变过程等特性的试验研究;最后,给出了一个大型砂土剪切试验中的应用实例。结果表明,基于图像相关分析的识别土体剪切带的方法是可行而有效的。  相似文献   

9.
Shear bands with characteristic spatial patterns observed in an experiment for a cubic or parallelepiped specimen of dry dense sand were simulated by numerical bifurcation analysis using the Cam‐clay plasticity model. By incorporating the subloading surface concept into the plasticity model, the model became capable of reproducing hardening/softening and contractive/dilative behavior observed in the experiment. The model was reformulated to be compatible with the multiplicative hyperelasto‐plasticity for finite strains. This enhanced constitutive model was implemented into a finite‐element code reinforced by a stress updating algorithm based on the return‐mapping scheme, and by an efficient numerical procedure to compute critical eigenvectors of elastoplastic tangent stiffness matrix at bifurcation points. The emergence of diamond‐ and column‐like diffuse bifurcation modes breaking uniformity of the materials, followed by the evolution of shear bands through strain localization, was observed in the analysis. In the bifurcation analysis of plane strain compression test, unexpected bifurcation modes, which broke out‐of‐plane uniformity and led to 3‐dimensional diamond‐like patterns, were detected. Diffuse bifurcations, which were difficult to observe by experiments, have thus been found as a catalyst creating diverse shear band patterns.  相似文献   

10.
重庆江北机场高填方边坡高度普遍为60~120 m,填料主要为砂、泥岩混合料,含石量非常高,也存在较多大粒径块石。对夯后填土开挖4 m深(强夯填土分层厚度)的大探坑,测试夯后填土的密度、物质组成,并拍照获取现场图像。通过筛分测试及图像处理技术,得到了夯后填料的级配曲线及结构特征。从工程尺度,将夯后填料粒径小于60 mm的视为胶结物,通过重塑样直剪试验测试标定其剪切性质。基于现场照片的图像分析,建立符合工程实际的夯后填土大尺度颗粒流数值模型,考虑粒径60 mm以上的碎块石的真实分布,模拟研究了江北机场高填方体夯后高含石量填料的剪切变形、损伤演化及剪切强度特征,揭示了夯后填料临近峰值及峰后剪应力与法向位移波动特征、大块石及含石量对剪切带分叉及绕石和峰后剪切应力跌落的影响规律。  相似文献   

11.
The paper reports on the results of theoretical and experimental investigations on the spontaneous formation of shear bands in sand bodies. The phenomenon is considered as a bifurcation problem. Consequently, material response and configuration-dependent loading determine the bifurcation mode. Both Coulomb's and Roscoe's solutions of inclination of the shear band can be correct theoretically and experimentally. The first one holds for non-rotating stress axes, the second one for co-rotating stress and strain increment axes during failure. Values in between can occur if the rotation of principal stress axes is not equal to one of these limits. If Coulomb's inclination of shear band occurs, there is a thin deforming material layer separating rigid bodies. Inside the shear band non-coaxiality of strain increment and stress holds from the beginning. If Roscoe's inclination of shear band occurs, it is separating two deforming bodies. Inside the shear band strain increment and stress are coaxial at peak.  相似文献   

12.
朱顺然  徐超  丁金华 《岩土力学》2018,39(5):1775-1780
针对土工合成材料界面特性试验易受试验装置影响的特点,采用大型叠环式剪切仪进行土工织物与砂土的界面剪切试验。对比砂土本身、土工织物与砂土的两种剪切试验结果发现,土工织物-砂土剪切引起的叠环位移较小;叠环的水平位移变化规律与土体的剪胀性具有密切联系,土工织物限制了下剪切盒内土颗粒的运动,对达到峰值强度时的土体剪胀也具有抑制作用。由试验结果可知,筋-土界面的剪切带远小于剪切的影响范围,土工织物在界面剪切中的作用不能仅通过剪切带反映,还应考虑土工织物的屏蔽作用和对于土体剪切带形成的影响。  相似文献   

13.
Heat‐induced excess pore pressures on the failure surface of a planar slide have been calculated by solving the mass and heat balance equations on the shear band. The set of differential equations and the equation of motion of the slide have been solved in closed form for the case of incompressible fluid and incompressible soil skeleton. The solution describes the accelerated motion of the slide. It has been compared with the numerical solution when soil and water stiffness terms are not disregarded. A case study, based on a well‐known translational slide (Cortes slide) has been solved. Numerical and analytical solutions are compared. Results of a sensitivity analysis indicate that the permeability of the shear band is the key parameter to control the onset of a rapid motion. For a band permeability above a threshold value, in the vicinity of 10?15m2 (10?8m/s), fast accelerated motions are very unlikely. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Numerous constitutive models built on coaxial theory and validated under axi‐symmetric condition often describe the stress–stain relationships and predict the inceptions of shear banding in sands inaccurately under true triaxial condition. By adopting an elaborated Mohr–Coulomb yield function and using non‐coaxial non‐associated flow rule, a 3D non‐coaxial elasto‐plasticity model is proposed and validated by a series of true triaxial tests on loose sands. The bifurcation analysis of true triaxial tests on dense sands predicts the influence of the intermediate principal stress ratio on the onset of shear band accurately. The failure of soils is shown to be related to the formation of shear band under most intermediate principal stress ratio conditions except for those which are close to the axi‐symmetric compression condition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Effect of consolidation on strain localization of soft clays   总被引:4,自引:0,他引:4  
A finite element formulation developed by Belytschko and his coworkers [1] is used to examine localized deformation as it exists for laboratory specimens of compressible Chicago clays. The element is based on an assumed strain formulation wherein localized and non-localized zones are embedded into an element when material based bifurcation is detected. A plane strain compression test of a natural clay specimen in which deformations localized into a single shear band during undrained shear is simulated using this element. Localization is initiated by imposing a non-uniform applied displacement consistent with that measured experimentally. Results indicate that to insure localization to a single band, considerations must be made for non-uniformities developed during the consolidation phase.  相似文献   

16.
Geotechnical experiments show that Lode angle‐dependent constitutive formulations are appropriate to describe the failure of geomaterials. In the present study, we have adopted one such class of failure criteria along with a versatile constitutive relationship to theoretically analyze the effects of Lode angle on localized shear deformation or shear band formation in loose sand for both drained and undrained conditions. We determine the variation in the possible stress states for shear localization due to the introduction of Lode angle by considering the localized deformation as a bifurcation problem. Further, similar bifurcation analysis is performed for the stress states along a specific loading path, namely, plane strain compression at the constitutive level. In addition, the plane strain compression tests have been simulated as a boundary value finite element problem to see how Lode angle affects the post‐localization response. Results show that the inclusion of a Lode angle parameter within the failure criterion has considerable effects on the onset, plastic strain, and propagation of shear localization in loose sand specimens. For drained condition, we notice early inception of shear localization and multiple band formation when the Lode angle‐dependent failure criterion is used. Undrained localization characteristics, however, found to be independent of Lode angle consideration.  相似文献   

17.
Landslides and collapses occurred during the May 12th earthquake in Wenchuan County. Most of these landslides and collapses were caused by shear bands. Shear band triggers instability on mountain slopes, resulting in debris flow, landslides, or collapse. According to experimental results, there was only one shear band forming in the soil layer prior to the initiation of debris flow under shear load, although several fine shear bands appeared. The development of shear bands in saturated soils is numerically investigated in this paper using the in situ soil from the Weijia Gully, Beichuan County. The evolution of shear banding from several finite amplitude disturbances (FADs) in pore pressure has been studied. The numerical analysis revealed that the FADs evolved into a fully developed shear band. It is shown that the shear banding process consists of two stages: inhomogeneous shearing and true shear banding.  相似文献   

18.
It is normally accepted that materials inside the shear band undergo severe rotation of the principal stress direction, which causes non‐coaxiality between the principal stress and principal plastic strain rate. However, classical plasticity flow theory implicitly assumes that the principal stress and the principal plastic strain rate are coaxial; thus, it may not correctly predict the onset of the shear band. In addition, classical continuum does not contain any internal length scales; as a result, it cannot provide a reasonable shear band thickness. In this study, the original vertex non‐coaxial plastic model based on the classical continuum is extended to the Cosserat continuum. The corresponding codes are implemented via the interface of the user defined element subroutine in ABAQUS. Through a simple shear test, the effectiveness of the user's codes is verified. Through a uniaxial compression test, the influence of non‐coaxiality on the onset, the orientation, and the thickness of the shear band is investigated. Results show that the onset of the shear localization is delayed, and the thickness of the shear band is widened when the non‐coaxial degree increases, while the orientation of the shear band is little affected by the non‐coaxial degree. In addition, it is found that the non‐coaxiality can weaken the micro‐polar effect to some extent; nonetheless, the Cosserat non‐coaxial model still has its advantage over the classical non‐coaxial model in capturing the pre‐bifurcation as well as the post‐bifurcation behaviors of strain localization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents first the applications of uniqueness and strain localization analysis of saturated porous media, where localization of deformation into well defined narrow zones in a saturated porous medium is studied in terms of discontinuous bifurcation theory. A generalized plasticity constitutive model and a Mohr–Coulomb model are used in both the theoretical and numerical analyses of shear band formations. The critical hardening moduli and shear band angle for localization are computed, and quantitative results are given for both constitutive models. Numerical results previously obtained and new ones are confirmed by this analytical and numerical investigation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
珠海海积软土剪切带微观结构试验研究   总被引:3,自引:0,他引:3  
天然软土剪切带性状分析一直是岩土力学界的一个研究重点。采用电镜扫描和压汞法对珠海海积软土剪切带内外以及带边缘微观结构进行定量分析,研究结果表明:珠海软土的应力-应变曲线在低围压下表现出明显应变软化特征;软土在剪切破坏后,剪切带内的微观参数变化率最大,其次是剪切带边缘,最后是剪切带外;剪切带边缘上的颗粒逐渐沿着剪切应力的方向呈定向排列,而剪切带内,由于颗粒发生破碎、折断,颗粒排列是随机的,在剪切带外,颗粒的排列受剪切破坏的影响较小;珠海海积软土的孔隙入口孔径分布为主单峰分布,其主峰峰值的位置是沿着剪切带外--带边缘--剪切带内转移;Roscoe理论和Arthur经验公式预测的剪切带倾角与实测值相比都偏小,不适宜黏性土的剪切带倾角预测计算;Mohr-Coulomb理论计算出的倾角与实测值比较一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号