首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Groundwater recharge and discharge in the Akesu alluvial plain were estimated using a water balance method. The Akesu alluvial plain (4842 km2) is an oasis located in the hyperarid Tarim River basin of central Asia. The land along the Akesu River has a long history of agricultural development and the irrigation area is highly dependent on water withdrawals from the river. We present a water balance methodology to describe (a) surface water and groundwater interaction and (b) groundwater interaction between irrigated and non‐irrigated areas. Groundwater is recharged from the irrigation system and discharged in the non‐irrigated area. Uncultivated vegetation and wetlands are supplied from groundwater in the hyperarid environment. Results show that about 90% of groundwater recharge came from canal loss and field infiltration. The groundwater flow from irrigated to non‐irrigated areas was about 70% of non‐irrigated area recharge and acted as subsurface drainage for the irrigation area. This desalinated the irrigation area and supplied water to the non‐irrigated area. Salt moved to the non‐irrigation area following subsurface drainage. We conclude that the flooding of the Akesu River is a supplemental groundwater replenishment mechanism: the river desalinates the alluvial plain by recharging fresh water in summer and draining saline regeneration water in winter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl? concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl? concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo‐water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.  相似文献   

4.
《Journal of Hydrology》2006,316(1-4):163-183
Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater–freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.  相似文献   

5.
Dieback of native Eucalyptus largiflorens forests is an increasing problem on the floodplains of the lower River Murray, southern Australia. Salinisation of floodplain soils, as a result of the changed hydrological management of the River Murray, appears to be a primary cause of the dieback. Regulation of the River Murray has reduced the frequency of large flood events by a factor of approximately three and caused groundwater levels beneath floodplains to rise. The higher water tables have resulted in increased discharge of the naturally saline groundwater in the floodplains by evapotranspiration, and the decreased incidence of large floods has reduced floodwater recharge and hence leaching of salt from floodplain soils. Use of soil physical properties for a range of floodplain soils, combined with measurements of groundwater discharge from bare and vegetated sites, suggests that the time-scale for complete soil salinisation can, at worst, be less than 20 years. Moreover, salt accumulation at most sites will continue to occur as the present flooding regime (of which there is limited scope for improvement) appears incapable of providing the leaching required to counteract accumulation. The analyses carried out here suggest that the ‘critical’ water table depth (below which groundwater discharge is balanced or exceeded by floodwater recharge) needs to be increased by 14–55% (the more clayey the soil, the larger the increase) to prevent salt accumulation. Failure to implement schemes which lower the water tables beneath the floodplain may, in the long term, cause serious damage to these important riparian forests.  相似文献   

6.
The Mendoza River is mainly dependent on the melting of snow and ice in the Upper Andes. Since predicted changes in climate would modify snow accumulation and glacial melting, it is important to understand the relative contributions of various water sources to river discharge. The two main mountain ranges in the basin, Cordillera Principal and Cordillera Frontal, present differences in geology and receive differing proportions of precipitation from Atlantic and Pacific moisture sources. We propose that differences in the origin of precipitation, geology and sediment contact times across the basin generate ionic and stable isotopic signatures in the water, allowing the differentiation of water sources. Waters from the Cordillera Principal had higher salinity and were more isotopically depleted than those from the Cordillera Frontal. Stable isotope composition and salinity differed among different water sources. The chemical temporal evolution of rivers and streams indicated changes in the relative contributions of different sources, pointing to the importance of glacier melting and groundwater in the river discharge.  相似文献   

7.
River discharge in mountainous regions of the world is often dominated by snowmelt, but base flows are sustained primarily by groundwater storage and discharge. Although numerous recent studies have focused on base-flow discharge in mountain systems, almost no work has explicitly investigated the role of karst groundwater in these systems across a full range of flow conditions. We directly measured groundwater discharge from 48 karst springs in the Kaweah River and its five forks in the Sierra Nevada mountains, California, United States. Relationships between spring and river discharge showed that karst aquifers and springs provide significant storage and delayed discharge to the river. Regression models showed that, of all potential seasonal groundwater storage compartments in the river basin, the area of karst (0.1–4.4%) present provides the best explanation of base-flow recession in each fork of the Kaweah River (directly measured contributions from karst springs ranged from 3.5 to 16% during high-flow to 20 to 65% during base-flow conditions). These results show that, even in settings where karst represents a small portion of basin area, it may play an over-sized role in seasonal storage and water resources in mountain systems. Karst aquifers are the single most important non-snow storage component in the Kaweah River basin, and likely provide similar water storage capacities and higher base flows in other mountain river systems with karst when compared with systems without karst.  相似文献   

8.
Groundwater depletion has been an emerging crisis in recent years, especially in highly urbanized areas as a result of unregulated exploitation, thus leaving behind an insufficient volume of usable freshwater. Presently Ganges river basin, the sixth largest prolific fluvial system and sustaining a huge population in South Asia, is witnessed to face (i) aquifer vulnerability through surface waterborne pollutant and (ii) groundwater stress due to summer drying of river as a result of indiscriminate groundwater abstraction. The present study focuses on a detailed sub-hourly to seasonally varying interaction study and flux quantification between river Ganges and groundwater in the Indian subcontinent which is one of the first documentations done on a drying perennial river system that feeds an enormous population. Contributing parameters to the total discharge of a river at its middle course on both temporal and spatial scale is estimated through three-component hydrograph separation and end-member mixing analysis using high-resolution water isotope (δ18O and δ2H) and electrical conductivity data. Results from this model report groundwater discharge in river to be the highest in pre-monsoon, that is, 30%, whereas, during post-monsoon the contribution lowers to 25%; on the contrary, during peak monsoon, the flow direction reverses thus recharging the groundwater which is also justified using annual piezometric hydrographs of both river water and groundwater. River water-groundwater interaction also shows quantitative variability depending on river morphometry. The current study also provides insight on aquifer vulnerability as a result of pollutant mixing through interaction and plausible attempts towards groundwater management. The present study is one of the first in South Asian countries that provides temporally and spatially variable detailed quantification of baseflow and estimates contributing parameters to the river for a drying mega fluvial system.  相似文献   

9.
This study demonstrates the application of multivariate statistical methods in definition of groundwater recharge and discharge areas in a sedimentary basin in Ghana. Q‐mode hierarchical cluster analysis (HCA) was applied to 57 hydrochemical data from the Buem formation in the northern part of the Volta Region in Ghana. R‐mode HCA and R‐mode factor analysis were then applied to the same dataset to reveal the processes controlling the hydrochemistry of groundwater from this hydrogeological formation. Results of both the Q‐ and R‐mode analyses were backed by graphical methods. The analyses revealed two major water types, differentiated by salinity levels into four spatial groundwater associations. The characteristics of the four groundwater types are discussed. The recharge areas are characterized by Ca? HCO3 low salinity waters which evolve through rock–water interactions to Na? HCO3 high salinity waters in the discharge areas. This study finds that the hydrochemistry of groundwater from this formation is mainly controlled by the weathering of minerals, principally silicates in the aquifer matrix. The effects of the chemistry of recharging precipitation are higher in the recharge areas, while mineral weathering tends to be severe close to the discharge areas in the groundwater flow regime. All the four spatial groundwater associations have low sodium content, but salinity levels increase towards the discharge areas, such that some of wells in the discharge areas may not be acceptable for irrigation on grounds of high salinities which might affect the osmotic potentials of plants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Floodplains have ecological and cultural significance and need to be managed properly. However, floodplains along the River Murray in South Australia are showing a substantial vegetation health decline due to increased salinization. To improve floodplain health, water resource managers are experimenting with the delivery of fresh water to the high priority floodplains. However, the salinity impact of watering on the shallow, saline groundwater is not well understood due to the presence of a spatially variable and impermeable surface clay layer. This study uses time-domain electromagnetics (EM) and surface nuclear magnetic resonance (NMR) to assess the impact of watering on groundwater salinity in a South Australian River Murray floodplain. We examined the changes in bulk electrical conductivity (EC) from time-domain EM data collected at five sites before and after a watering event. Only one site showed a bulk EC reduction of up to 5,200 μS/cm, suggesting groundwater was freshened, whilst the remaining sites showed little change in bulk EC. Our results suggest the salinity impact of watering is highly localized and heterogeneous. For ecological management purposes, it is also desirable to estimate groundwater EC after watering. This study presents a method to estimate groundwater EC in a highly conductive environment by coupling EM with surface NMR. We also extended the analysis to an airborne-EM survey to derive spatial distribution of groundwater EC, which provides additional insights into the floodplain processes and shows an overall good agreement with field observations. This study demonstrates the potential benefits of using geophysics to investigate floodplain dynamics. The methodology developed in this study is useful for first-pass assessments of groundwater quality in a non-invasive manner, which is transferrable to many other fresh or saline groundwater systems, especially in ecologically sensitive areas where traditional hydrogeological techniques may be unsuitable due to the potential disturbance of local ecosystems.  相似文献   

11.
Much of what is known about groundwater circulation and geochemical evolution in carbonate platforms is based on platforms that are fully confined or unconfined. Much less is known about groundwater flow paths and geochemical evolution in partially confined platforms, particularly those supporting surface water. In north‐central Florida, sea level rise and a transition to a wetter climate during the Holocene formed rivers in unconfined portions of the Florida carbonate platform. Focusing on data from the Santa Fe River basin, we show river formation has led to important differences in the hydrological and geochemical evolution of the Santa Fe River basin relative to fully confined or unconfined platforms. Runoff from the siliciclastic confining layer drove river incision and created topographic relief, reorienting the termination of local and regional groundwater flow paths from the coast to the rivers in unconfined portions of the platform. The most chemically evolved groundwater occurs at the end of the longest and deepest flow paths, which discharge near the center of the platform because of incision of the Santa Fe River at the edge of the confining unit. This pattern of discharge of mineralized water differs from fully confined or unconfined platforms where discharge of the most mineralized water occurs at the coast. Mineralized water flowing into the Santa Fe River is diluted by less evolved water derived from shorter, shallower flow paths that discharge to the river downstream. Formation of rivers shortens flow path lengths, thereby decreasing groundwater residence times and allowing freshwater to discharge more quickly to the oceans in the newly formed rivers than in platforms that lack rivers. Similar dynamic changes to groundwater systems should be expected to occur in the future as climate change and sea level rise develop surface water on other carbonate platforms and low lying coastal aquifer systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater discharge from the Riverine Plains of the southern Murray‐Darling Basin is a major process contributing salt to the Murray River in Australia. In this study, data from an irrigated 60 000 ha catchment in the Riverine Plains were analysed to understand groundwater discharge into deeply incised drains, the process dominating salt mobilization from the catchment. We applied three integrated methodologies: classification and regression trees (CART), conceptual modelling and artificial neural networks (ANNs) to a comprehensive, spatially lumped, monthly data set from July 1975 to December 2004. Using CART analysis, it was shown that rainfall was the most important variable consistently explaining the salt load patterns at the catchment outlet. Using the conceptual model representing spatially lumped groundwater discharge into deeply incised drains, we demonstrated that salt mobilization from the study catchment can be well represented by a rainfall contribution, influenced by the hydraulic head in the deep regional aquifer and potential evapotranspiration. Using ANNs, it was confirmed that rainfall had a much higher impact on salt loads at the catchment outlet than irrigation water use. All these results demonstrate that under conditions similar to those experienced from 1975 to 2004, it is rainfall rather than irrigation water use that governs salt mobilization from the study catchment. Management of salt mobilization from irrigated catchments has traditionally focussed on the improvement of irrigation practices but it could be equally important to further understand the scope for management to control groundwater discharge in these irrigation areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
High groundwater salinity has become a major concern in the arid alluvial plain of the Dunhuang Basin in northwestern China because it poses a significant challenge to water resource management. Isotopic and geochemical analyses were conducted on 55 water samples from springs, boreholes and surface water to identify potential sources of groundwater salinity and analyse the processes that control increasing salinity. The total dissolved solid (TDS) content in the groundwater ranged from 400 to 41 000 mg/l, and high TDS values were commonly associated with shallow water tables and flow‐through and discharge zones in unconfined aquifers. Various groundwater contributions from rainwater, agricultural irrigation, river water infiltration and lateral inflows from mountains were identified by major ions and δD and δ18O. In general, HCO3? and SO42? were the dominant anions in groundwater with a salinity of <2500 mg/l, whereas Cl? and SO42? were the dominant anions in groundwater with a salinity of >2500 mg/l. The major ion concentrations indicated that mineral weathering, including carbonate and evaporite dissolution, primarily affected groundwater salinity in recharge areas. Evapotranspiration controlled the major ion concentration evolution and salinity distribution in the unconfined groundwaters in the flow‐through and discharge areas, although it had a limited effect on groundwater in the recharge areas and confined aquifers. Agricultural irrigation increased the water table and enhanced evapotranspiration in the oasis areas of the basin. TDS and Cl became more concentrated, but H and O isotopes were not enriched in the irrigation district, indicating that transpiration dominated the increasing salinity. For other places in the basin, as indicated by TDS, Cl, δD and δ18O characteristics, evaporation, transpiration and water–rock interactions dominated at different hydrogeological zones, depending on the plant coverage and hydrogeological conditions. Groundwater ages of 3H, and δD and δ18O compositions and distributions suggest that most of the groundwaters in Dunhuang Basin have a paleometeoric origin and experienced a long residence time. These results can contribute to groundwater management and future water allocation programmes in the Dunhuang Basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction between surface water and groundwater is an important aspect of hydrological processes. Despite its importance, groundwater is not well represented in many land surface models. In this study, a groundwater module with consideration of surface water and groundwater dynamic interactions is incorporated into the distributed biosphere hydrological (DBH) model in the upstream of the Yellow River basin, China. Two numerical experiments are conducted using the DBH model: one with groundwater module active, namely, DBH_GW and the other without, namely, DBH_NGW. Simulations by two experiments are compared with observed river discharge and terrestrial water storage (TWS) variation from the Gravity Recovery and Climate Experiment (GRACE). The results show that river discharge during the low flow season that is underestimated in the DBH_NGW has been improved by incorporating the groundwater scheme. As for the TWS, simulation in DBH_GW shows better agreement with GRACE data in terms of interannual and intraseasonal variations and annual changing trend. Furthermore, compared with DBH_GW, TWS simulated in DBH_NGW shows smaller decreases during autumn and smaller increases in spring. These results suggest that consideration of groundwater dynamics enables a more reasonable representation of TWS change by increasing TWS amplitudes and signals and as a consequence, improves river discharge simulation in the low flow seasons when groundwater is a major component in runoff. Additionally, incorporation of groundwater module also leads to wetter soil moisture and higher evapotranspiration, especially in the wet seasons.  相似文献   

15.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

16.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Groundwater discharges in the western Canadian oil sands region impact river water quality. Mapping groundwater discharges to rivers in the oil sands region is important to target water quality monitoring efforts and to ensure injected wastewater and steam remain sequestered rather than eventually resurfacing. Saline springs composed of Pleistocene‐aged glacial meltwater exist in the region, but their spatial distribution has not been mapped comprehensively. Here we show that formation waters discharge into 3 major rivers as they flow through the Athabasca Oil Sands Region adjacent to many active oil sands projects. These discharges increase river chloride concentrations from river headwaters to downstream reaches by factors of ~23 in the Christina River, ~4 in the Clearwater River, and ~5 in the Athabasca River. Our survey provides further evidence for the substantial impact of formation water discharges on river water quality, even though they comprise less than ~2% of total streamflow. Geochemical evidence supporting formation water discharges as the leading control on river salinity include increases in river chloride concentrations, Na/(Na + Ca) ratios, Cl/(Cl + SO4) ratios and decreases in 87Sr/86Sr ratios; each mixing trend is consistent with saline groundwater discharges sourced from Cretaceous or Devonian aquifers. These regional subsurface‐to‐surface connections signify that injected wastewater or steam may potentially resurface in the future, emphasizing the critical importance of mapping groundwater flow paths to understand present‐day streamflow quality and to predict the potential for injected fluids to resurface.  相似文献   

18.
In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray–Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.  相似文献   

19.
Chahardouly basin is located in the western part of Iran and is characterized by semi‐arid climatic conditions and scarcity in water resources. The main aquifer systems are developed within alluvial deposits. The availability of groundwater is rather erratic owing to the occurrence of hard rock formation and a saline zone in some parts of the area. The aquifer systems of the area show signs of depletion, which have taken place in recent years due to a decline in water levels. Groundwater samples collected from shallow and deep wells were analysed to examine the quality characteristics of groundwater. The major ion chemistry of groundwater is dominated by Ca2+ and HCO3?, while higher values of total dissolved solids (TDS) in groundwater are associated with high concentrations of all major ions. An increase in salinity is recorded in the down‐gradient part of the basin. The occurrence of saline groundwater, as witnessed by the high electrical conductivity (EC), may be attributed to the long residence time of water and the dissolution of minerals, as well as evaporation of rainfall and irrigation return flow. Based on SAR values and sodium content (%Na), salinity appears to be responsible for the poor groundwater quality, rendering most of the samples not suitable for irrigation use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
《国际泥沙研究》2020,35(4):365-376
The Yom River is one of the four major sediment sources to the Chao Phraya River in Thailand. Human activities and changes in climate over the past six decades may have affected the discharge and sediment load to some extent. In the current study, the river discharge and sediment characteristics in the mainstream of the Yom River were investigated using the field observation data from 2011 to 2013 and the historical river flow and sediment data from 1954 to 2014 at six hydrological stations operated by the Royal Irrigation Department of Thailand (RID). The non-parametric Mann-Kendall test and double mass curve were used to analyze the sediment dynamics and temporal changes in the discharge of the Yom River. The results revealed that the sediment was mainly transported in suspension, and the bed-to-suspended sediment loads ratio varied between 0 and 0.05. The daily suspended sediment load (SSL) in the upper and middle basins had a strong correlation with the daily discharge and could be represented by power equations with coefficients of determination higher than 0.8. The daily suspended sediment load in the lower basin did not directly depend on the corresponding discharge because of the reduction in river slope and water diversion by irrigation projects. It also appeared that the river discharges and sediment loads were mainly influenced by climate variation (floods and droughts). Moreover, the average sediment transport of the upper, middle, and lower reaches were 0.57, 0.71, and 0.35 million t/y, respectively. The sediment load in the lower basin decreased more than 50% as a result of changes in the river gradient (from mountainous to floodplain areas). The results from sediment analysis also indicated that the construction of the Mae Yom Barrage, the longest diversion dam in Thailand, and land-use changes did not significantly affect the sediment load along the Yom River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号