首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
2.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.  相似文献   

4.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

5.
Measurements have been made of unsaturated and saturated lateral soil water flow on a convex hill-slope with a good soil cover and impermeable bedrock during natural rainstorms. The hydraulics of flow are examined in detail with particular reference to the role of breaks in vertical permeability, the change from saturated to unsaturated flow and the velocity of flow. In this instance, after rainfall slope flow is dominated by vertical unsaturated movement towards the profile base. Preceding upslope moisture gradients result in the growth of a zone of soil saturation upwards from the slope base. Slope discharge, through the B and B/C horizons, is related to the form of the saturation zone, within which flow is lateral, according to Darcy's law. The time required for vertical percolation and the low hydraulic conductivity of the lower soil horizons result in a hillslope hydrograph which is delayed and attenuated and cannot be regarded as stormflow. During drainage the saturation zone contracts and is replaced by a lateral unsaturated flow system at the profile base which supplies discharge from the B/C horizon for up to 42 days without further recharge. It is concluded that, in general, either distinct soil horizons or impermeable bedrock are essential for the initiation of lateral flow. Saturated flow is likely to dominate hillslope hydrographs through non-capillary pore spaces but these may be integrated to the point where Darcy's law still holds. Although lateral soil water flow must be a widespread phenomenon, it is unlikely to provide storm runoff to the stream unless saturated conditions are generated within the organic horizons for flow within the lower soil horizons is dominated by non-Darcian flow through non-capillary spaces in the soil.  相似文献   

6.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   

7.
Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system.  相似文献   

8.
Environmental tracers, such as tritium, have generally been used to estimate aquifer recharge under natural conditions. A tritium tracer test is presented for estimating recharge under semi‐arid and irrigated conditions. The test was performed along 429 days (June 2007–August 2008) on an experimental plot located in SE Spain with drip irrigation and annual row crops (rotation of lettuce and melon), in which common agricultural practices were followed in open air. Tritiated water was sprinkled (simulated rainfall) over the plot, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure tritium concentration in soil water samples. Tritium transport, as liquid or vapor phase, was simulated with the one‐dimensional numerical code SOLVEG. Simulations show that the crop water use was below potential levels, despite regular irrigation. Continuous high water content in soil promoted a great impact of rainfall events on the aquifer recharge. The results obtained from tritium tracer test have been compared with other independent recharge assessment, soil water balance method, to evaluate the reliability of the first one. Total recharge from tracer test was 476 mm for the October 2007–September 2008 period versus 561 mm from soil water balance method for the same period, which represents 37.1% and 43.7% of the applied water (1284 mm, irrigation + precipitation), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Tritium concentrations are used to trace water circulation in the Urumqi and Turfan basins in the Xinjiang, western China. Tritium analyses were made for 77 water samples of river waters, groundwaters, spring waters, lake waters and glacier ice collected in summers in 1992 and 1994. The tritium concentrations in the waters are in a wide range from 0 to 125 TU, most of which are considerably high compared with those of most waters in Japan, because tritium levels in precipitation in the area are over ten times as high as those in Japan. River waters originating in glacier regions contain melt glacier, the proportion of which is over 0.5 to river water. The mean resi-dence time of circulating meteoric water in the mountain regions is estimated to be about 15 years. Most groundwaters and spring waters in the flat regions are mainly derived from river waters originating in glacier regions. The groundwater of greatest tritium concentrations in wells in Urumqi City is derived from Urumqi River about 25 years ago. It takes several ten years for river water to pass the underground to many springs. Some groundwaters and spring waters have taken a long time more than 40 years to travel under the ground. Enrichment of tritium in lake water by evaporation is considered to estimate the contribution of groundwater flow to the recharge of lake. Various contributions of groundwater to lakes are inferred for the various type of salinity in closed or semi-closed lakes. The inflow rates of groundwater to salt lakes are small as against fresh water lakes.  相似文献   

11.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   

12.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

13.
Seasonal signals of stable isotopes in precipitation, combined with measurements of isotope ratios in soil water, can be used for quantitative estimation of groundwater recharge rates. This study investigates the applicability of using the piston flow principle and the peak shift displacement method to estimate actual groundwater recharge rates in a humid Nordic region located in the province of Quebec, Canada. Two different sites with and without vegetation (C1 and C2) in an unconfined aquifer were tested by measuring soil water isotope ratios (18O/16O and 2H/1H) and volumetric pore water content. Core samples were obtained along the vadose zone down to the groundwater table at the two sites (2.45 m for Site C1 and 4.15 m for Site C2). The peak shift method to estimate groundwater recharge rates was shown to be accurate only in certain specific conditions inherent to the soil properties and the topographical situation of the investigated sites. Indeed, at Site C2, recharge from the snowmelt could not be estimated because of heterogeneity in the lower part of the vadose zone. At this same site the later recharge after the snowmelt (in the period from late spring to early autumn) could be estimated accurately because the upper part of the vadose zone was homogeneous. Furthermore, at site C1, runoff/runon phenomena hampered calculations of actual infiltration and thus produced inaccurate results for recharge. These two different site effects (heterogeneity in the first site and runoff/runon in the other site) were identified as being limiting factors in the accurate assessment of actual recharge. This study therefore recommends the use of the peak shift method for (1) humid Nordic regions, (2) homogeneous and thick vadose zones, and (3) areas with few or limited site effects (runoff/runon).  相似文献   

14.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

15.
Finite element modelling of the saturated–unsaturated surface–subsurface flow mechanisms operative in a small salinized catchment in south‐western Australia was used to help define the flow system and explain the causes of waterlogging and salinization there. Data available at the site from a previous study were used to obtain a first approximation to the flow system. Altering the properties of some of the strata gave a closer calibration. It was found that the modelled saturated hydraulic conductivity of the B horizon in the duplex soil zone needed to be at least an order of magnitude lower than that measured in order to reproduce the perching conditions observed in the field. Also, the model indicated the influence of a doleritic dyke, whose presence was confirmed by field measurement. Our analysis showed that there were two main flow systems operating in the hillslope. The first, and most dominant, was the recharge occurring through the upslope gradational soil zone and percolating down to both the deeply weathered regolith and the basal aquifer. The second flow system is an unsaturated flow system operating in the high permeability A horizon in the downslope duplex soil zone. The first system is primarily responsible for the saline seepage zone in the valley bottom. The second contributes to the waterlogging and perching occurring upslope of the seepage zone. Vertical flow through the higher permeability B horizon in the gradational soil zone in the upper slopes is a major contributor of recharge. Recharge by flow through macropores occurs where, but only where, perched aquifers develop and allow the macropores to be activated. Areas with perched aquifers occurred in downslope locations and near a doleritic dyke located upslope. Thus, the area where macropore recharge occurred was not large. The recharge rate required to maintain the piezometric levels at present values is only about 30 mm/yr (about 5% of the annual rainfall). The piezometric levels under the upper part of the catchment varied greatly with only small changes in recharge rate. A 50% reduction in recharge rate had the effect of reducing the length of the seepage zone at the end of winter by 40%. Changes in recharge rate had little effect on the extent of the perched aquifer at the end of winter. Deep‐rooted perennial forages, shrubs or trees on the gradational soil zone in the upper part of the catchment and on the zones upslope of geological barriers to flow would be required to reduce the recharge and to allow for rehabilitation of the saline valley floor. Waterlogging associated with the perched water table in the bottom part of the catchment would be best addressed by tree plantations located just upslope of the salinized zone in the valley floor. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Part of a small drainage basin on the Sevilleta National Wildlife Refuge (about 25 km north of Socorro, NM) was intensively instrumented with soil monitoring equipment to estimate natural ground-water recharge. Soil-moisture data were analysed with special attention to characterizing the influence of topography on the direction of vadose water flow paths in fine to medium aeolian sand. Moisture content data were obtained by the neutron scattering technique, and hydraulic head data were obtained using tensiometers. In addition, tracer experiments were conducted on a sandy hillslope to delineate the flow paths of vadose water. The results indicate that there is a strong lateral component to unsaturated flow on a hillslope, even in the absence of apparent sublayers of much lower permeability. Darcian calculations estimate the long-term, steady, deep flux beneath a concave location to be about 4 per cent of an assumed mean annual precipitation of 20 cm. The deep soil water flux downward varied by several orders of magnitude during the 17 month period of record.  相似文献   

17.
In a tropical rainforest catchment, shallow piezometers respond almost instantaneously to rainfall, but the dominant ground water recharge mechanisms are not well understood. To improve understanding, the downward movement of soil water on a runoff plot was traced using tritiated water injected at 0·20 m below the surface which marks the lower boundary of active subsurface storm flow. The tritium pulse was translated slowly down the profile, apparently dominated by interstitial piston flow on the lines described by Zimmermann's theoretical model. This recharge mechanism accounted for about 35 per cent of rainfall or 50 per cent of throughfall. The pulse's advance may have also been delayed by the upward movement of soil water indicated by the distribution of hydraulic potential under different hydrological conditions. The result was an increase in soil water transit time particularly below 1·0 m. There was also evidence in the tracer profiles for rapid by-pass flow but the volumes concerned could not be quantified in this experiment.  相似文献   

18.
To assess the contribution of accumulated winter precipitation and glacial meltwater to the recharge of deep ground water flow systems in fracture crystalline rocks, measurements of environmental isotope ratios, hydrochemical composition, and in situ parameters of ground water were performed in a deep tunnel. The measurements demonstrate the significance of these ground water recharge components for deep ground water flow systems in fractured granites of a high alpine catchment in the Central Alps, Switzerland. Hydrochemical and in situ parameters, as well as delta(18)O in ground water samples collected in the tunnel, show only small temporal variations. The precipitation record of delta(18)O shows seasonal variations of approximately 14% and a decrease of 0.23% +/- 0.03% per 100 m elevation gain. delta(2)H and delta(18)O in precipitation are well correlated and plot close to the meteoric water line, as well as delta(2)H and delta(18)O in ground water samples, reflecting the meteoric origin of the latter. The depletion of 18O in ground water compared to 18O content in precipitation during the ground water recharge period indicates significant contributions from accumulated depleted winter precipitation to ground water recharge. The hydrochemical composition of the encountered ground water, Na-Ca-HCO3-SO4(-F), reflects an evolution of the ground water along the flowpath through the granite body. Observed tritium concentrations in ground water range from 2.6 to 16.6 TU, with the lowest values associated with a local negative temperature anomaly and anomalous depleted 18O in ground water. This demonstrates the effect of local ground water recharge from meltwater of submodern glacial ice. Such localized recharge from glaciated areas occurs along preferential flowpaths within the granite body that are mainly controlled by observed hydraulic active shear fractures and cataclastic faults.  相似文献   

19.
Recharge from preferential flow through mega-thick (100–1000 m) unsaturated zones is a pervasive phenomenon, as demonstrated with a case study of volcanic highland recharge areas in the Great Basin province in southern Nevada, USA. Statistically significant rising water-level trends occur for most study-area wells and resulted from a relatively wet period (1969–2005) in south-central Nevada. Wet and dry winters control water-level trends, with water levels rising within a few months to a year following a wet-winter recharge event and declining during sustained dry periods. Even though a megadrought has persisted since 2000, this drought condition did not preclude major recharge events. Modern groundwater reaching the water table is consistent with previous geochemical studies of the study area that indicate mixing of modern and late Pleistocene recharge water. First-order approximations and simple mixing models of modern and late Pleistocene water indicate that 10% to 40% of recharge is preferential flow and that modern recharge may play a larger role in the water budget than previously thought.  相似文献   

20.
In the shallow groundwater areas of the North China Plain (NCP), precipitation infiltration and evapotranspiration in the vertical direction are the main processes of the water cycle, in which the unsaturated zone plays an important role in the transformation process between precipitation and groundwater. In this paper, two typical sites in Cangzhou (CZ) and Hengshui (HS) of Hebei province with shallow water tables were selected to analyse the relationship among precipitation, soil water and groundwater. At each site, precipitation, soil water at depths 10, 20, 30, 50, 70, 100, 150, 200, 300 cm, and groundwater were sampled to analyse the stable isotope compositions of hydrogen and oxygen. The soil water potentials at the corresponding depths were observed. Although the climates at the two sites are similar, there are some differences in the infiltration process, soil water movement and groundwater recharge sources. Evaporation occurred at the upper depths, which led to the decrease of soil potential and the enrichment of heavy isotopes. At the CZ site, precipitation infiltrated with piston mode, and an obvious mixture effect existed during the infiltration process. Preferential flow may exist in the soil above 100 cm depth. However, at the HS site soil water moved in piston mode, and groundwater was mainly recharged by precipitation. When precipitation recharged the groundwater it experienced a strong evaporation effect. The results of the soil water movement mechanism provides the transformation relationship among precipitation, soil water and groundwater in the middle and eastern NCP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号