首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 368 毫秒
1.
干旱半干旱区土壤水分的主要补给来自于降水,降水决定土壤水分时空格局变化,对不同深度土壤水分的补给起到了关键作用。通过优化参数后的Hydrus-1D模型,分析出毛乌素沙地流动沙丘10、30、50、70、90、110 cm土层水分渗漏量变化特征及其对不同降雨格局的响应。结果表明:5—9月,流动沙丘不同深度土层渗漏量随着深度的增加存在一定差异,5—8月渗漏量随着土层深度的增加呈递减趋势,9月呈增加趋势。渗漏量与降水量变化一致,最大渗漏量发生在8月,110 cm处渗漏量为148.51 mm,占该月降水量的67.5%;最大渗漏速率与最大渗漏量发生在降雨量大的降水事件,降水量和土壤初始含水量共同决定了渗漏速率及渗漏时长。14.8 mm降水可渗漏到110 cm深度土层,达到最大渗漏速率的累计渗漏量为1.89 mm,占降水量的13.69%。连续降水事件有利于水分的深层渗漏补给,并且缩短了各土层渗漏速率到达峰值的时间。  相似文献   

2.
低覆盖度治沙理论的核心水文原理概述   总被引:1,自引:0,他引:1  
土壤水分的渗漏过程是陆地生态水文的3个最核心过程之一,降水向土壤深层渗漏或者补给地下水,关系到干旱沙区水平衡维持和植被稳定持续发育。多年的治沙实践和研究结果表明:(1)天然分布稳定的沙生植被,覆盖度一般低于30%,降水均能够渗漏到土壤深层或者补给地下水;(2)人工营造的固沙林,当林分的覆盖度大于40%后,林下土壤含水率逐步降低,降水不能够渗漏到土壤深层或者补给地下水,林木出现衰败或者死亡;(3)低覆盖度固沙林设计出了带间的土壤渗漏补给带,确保了降水能够渗漏到深层或者补给地下水,固沙林及其带间植被能够稳定持续发育;(4)在极端干旱区,基本上没有降水能够渗漏到2 m以下土层,灌溉才能确保林分的稳定持续;在干旱区,深层渗漏水量占年降雨量的1%—13%,半干旱地区的深层渗漏水量占年降雨量的11%—23%,半湿润干旱区的深层渗漏水量占年降雨量的15%—45%,能够确保沙区的水平衡和雨养植被的稳定持续发育。这也是低覆盖度治沙理论最基本的生态水文原理,为中国防沙治沙事业开拓了新领域、新方向和新思路,对推动中国今后的防沙治沙工作有着重要意义。  相似文献   

3.
毛乌素沙地流动沙丘土壤水分对降雨的响应   总被引:10,自引:3,他引:7  
为探讨半干旱区流动沙丘土壤水分对降雨的响应,采用AV-3665R型雨量传感器、ECH2O-5土壤水分传感器同步监测毛乌素沙地东北缘流动沙丘2013年降雨及0~200 cm深度土壤体积含水量动态,分析土壤水分含量变化特征、降雨入渗特征及降雨对土壤水的补给作用。结果表明:5-11月累积降雨399.4 mm,显著(p<0.01)影响0~200 cm深度土壤水分含量; 且0~200 cm深度土壤体积含水量较低(6.49%±1.12%)时53.8 mm降雨、较高(10.22%±1.96%)时24.2 mm降雨湿润锋能够到达200 cm; 试验期间399.4 mm累积降雨对土壤水有一定补给作用,其中45.7±14.1 mm降雨蓄存在0~200 cm深度土壤中,占同期降雨的(11.4%±3.5%,且随着时间的延长,蓄存水大部分将渗漏到200 cm以下补给深层土壤水。  相似文献   

4.
深层渗漏是沙地地表水和地下水连通性的重要指标.为了深入分析不同沙地深层渗漏的特征,采用渗漏仪实时监测流动沙丘降雨对200 cm深层的补给水量.结果表明:浑善达克沙地2017-2019年降雨量为229.9±45.6 mm,年渗漏量8.2±7.4 mm、年渗漏量占同期降雨量3.1%±2.3%;毛乌素沙地2013-2015年...  相似文献   

5.
土壤水分是干旱半干旱地区生态环境的主要限制性因子,研究科尔沁沙地流动沙丘和草甸地土壤水分动态规律有助于荒漠化地区的生态恢复和保护。以2018年5月25日至10月31日为研究期,利用土壤各项实测参数和气象数据,评价Hydrus-1D模型在科尔沁沙地的适用性,并揭示科尔沁沙丘-草甸相间区土壤水分分布特征,重点分析研究区流动沙丘200 cm剖面和草甸地80 cm剖面土壤水分的动态规律。结果表明:研究区典型土地类型流动沙丘和草甸地土壤水分模拟值和实测值的决定系数均高于0.76,均方根误差0.01~0.02 cm3·cm-3;在土壤剖面上具有明显的分层结构,流动沙丘分为3层,即0~20 cm为干沙层,20~120 cm为活跃层,120~200 cm为稳定层,其中40 cm土壤水分波动性最大;草甸地分为2层,即0~40 cm为活跃层,40~80 cm为稳定层,主要受降雨、蒸散发和地下水位影响;流动沙丘和草甸地降雨与表层土壤水分呈极显著相关,降雨量与地下水位变化仅草甸地呈显著正相关;在整个研究期内,流动沙丘土壤水分储量变化量为12.6 mm,土壤实际蒸发量为105.9 mm,200 cm深层渗漏量为173.9 mm,占总降雨量的59.5%;草甸地土壤水分储量变化量为8 mm,80 cm深层渗漏量为-27.2 mm(地下水补给量),土壤实际蒸发量为67 mm,植被蒸腾量为244 mm,地表径流量为0 mm。  相似文献   

6.
在流动沙丘以建立固沙植被的方式向固定沙丘转化的过程中,植被将改变沙丘水分再分配过程,影响沙丘的水文调节功能,甚至可能引起沙丘生态系统水资源失衡。为探明植被对沙丘水文调解功能的影响,以科尔沁沙地不同植被盖度的沙丘-丘间地水体组合体为研究对象,于2021年生长季开展了沙丘植被盖度、丘间低地水体变化特征、气象因素的动态观测,以期明确沙丘植被变化对丘间低地水体的影响。结果表明:(1)沙丘植被盖度影响沙丘水分对外补给能力,随着沙丘表面固沙植被盖度增加,单位面积沙丘对外水分补给能力降低,表现为流动沙丘(58.25 mm)>半固定沙丘(24.75 mm)>固定沙丘(14.87 mm),占同期降水量的比例分别为21.39%、9.09%、5.46%。(2)生长季流域降水补给量、植被盖度、气温显著影响沙丘对丘间低地水体的水分补给量,丘间低地水体获补量与流域降水补给量显著正相关,与植被盖度、气温极显著负相关。(3)依据水量平衡原理推导出沙丘水分对外补给量(Y)与影响因素(降水补给量X_(1),植被盖度X_(2),平均气温X_(3))的关系模型,Y=1052.737+0.1X_(1)-11.459X_(2)-37.585X_(3),R2=0.641。可根据模型预测沙丘水分对外补给量,为流动沙丘生物治理模式的合理选择提供支持。  相似文献   

7.
毛乌素沙地典型流动沙丘水分深层渗漏量及动态特征   总被引:3,自引:3,他引:0  
水分是干旱、半干旱区生态系统中最重要的限制因子,一直以来都是研究的热点问题。然而由于测定方法的缺失,流动沙丘深层水分渗漏量的动态变化特征缺少令人信服的直接证据。采用YWB-01型水分深层渗漏记录仪,研究了毛乌素沙地流动沙丘降雨入渗过程及150 cm深度处的深层渗漏特征。结果表明:2011年5月14日到2014年7月14日,深层渗漏量≤1 mm的天数为793天,占总观测到渗漏时长的81.5%,深层渗漏量占总渗漏量的21.3%;深层渗漏量≥10 mm的天数为18天,占总观测到渗漏时长的1.85%,深层渗漏量占总渗漏量的33.3%。集中补给期主要在6-9月,渗漏量分别占各年总渗漏量的70%以上。深层渗漏量和降雨量之间均呈显著正相关关系。  相似文献   

8.
土壤水分深层渗漏是陆地近地层水分循环的重要环节。利用土壤水分深层渗漏记录仪对毛乌素沙地典型流动沙丘不同深度土层的土壤渗漏水量连续进行两年定点监测。结果表明:(1)2016年生长季(4月1日至10月31日)降水量为2017年的1.93倍,但50、100、200 cm沙层的渗漏水量分别是2017年同期的4.53、5.53,5.22倍。同时,渗漏水量与降雨量及土壤蓄水量的波峰较一致。(2)强降雨对深层渗漏水量的影响较大,土壤蓄水量的变化也与深层渗漏水量密切相关;降雨量较小时,土壤蓄水量与深层渗漏水量之间的关系更为密切。在连续降雨过程中,越往深处,渗漏的产生通常是多次降雨过程累积的结果,将土壤蓄水量作为中间变量,能更好地分析土壤深层渗漏过程。(3)当天蓄水量与次日渗漏水量的相关系数较高,土层越深,深层渗漏水量与土壤蓄水量的相关系数增加,二者之间的线性拟合的R2也相应增加。  相似文献   

9.
程立平  王亚萍  齐光 《地理研究》2021,40(9):2684-2694
通过对长武黄土塬区不同林龄苹果林地下0~20 m深剖面土壤湿度及土壤水氯离子浓度测定,定量分析了黄土塬区苹果种植对厚深黄土剖面土壤水分及地下水补给的影响。结果表明:随着林龄增加,苹果林地深剖面土壤水分由浅及深逐年降低,深层土壤储水量呈倒“S”曲线趋势下降,27龄之后进入稳定期。丰水年份形成的活塞流是黄土塬区深层渗漏以及地下水补给的主导方式,农田下地下水年均潜在补给量为30.2 mm,占年均降水量的5.2%。农田转换为苹果林地后形成的深厚土壤干层将阻断降水对地下水的补给,减弱地下水补给过程中活塞流的主导作用。需通过政策引导协调农果面积比例,保证地下水资源持续补给,达到可持续利用的目的。  相似文献   

10.
乌兰布和沙漠灌溉农田深层渗漏特征与水量平衡   总被引:1,自引:0,他引:1  
中国干旱区分布着大面积的灌溉农田,改造沙漠(包括戈壁)为灌溉农田仍为治沙的重要途径,深层渗漏是地表水温过程及优化灌溉制度的重要参数。针对乌兰布和沙漠熟化的灌溉农田,保留50 cm的耕作层熟化土壤,分别客换50~150 cm砂土、壤土和黏土,配置成为3种土壤类型样地,实时监测了当地农民对农田的实际灌溉量与灌水量、土壤含水率及深层渗漏量。结果表明:(1)2017年4月17日的单次灌水量118.64 mm后,砂土、壤土、黏土样地150 cm深层出现渗漏的时间分别为灌溉后的13、72、257 h。(2)单次灌水量118.64 mm的15 d后,砂土、壤土、黏土样地150 cm深层渗漏量分别为110.87、12.2、0.8 mm。(3)2017年生长季内(4月1日至10月30日)5次灌溉水总量为641.53 mm时,渗漏水总量为砂土449.60 mm、壤土270.60 mm;土壤的蓄水量变化为砂土-48.79 mm、壤土-35.32 mm。(4)砂土、壤土和黏土的渗漏水量差异是影响灌溉水量和频率的重要因素。  相似文献   

11.
沙丘水分的深层渗漏和侧向运移与深层土壤水、地下水及相邻丘间低地的水分状况密切关联。以科尔沁沙地典型流动沙丘迎风坡坡底,迎风坡坡中、坡顶、背风坡坡中和背风坡坡底监测点为例,采用自制的水分渗漏量及侧向运移量的监测装置,测定了科尔沁沙地流动沙丘各坡位入渗到0~100 cm土层雨水沿坡面的侧向运移量及入渗到100 cm以下的深层渗漏量。结果表明:生长季(5—10月)流动沙丘坡顶、迎风坡坡中、背风坡坡中、背风坡坡底处累积深层渗漏量分别为44.46、78.65、61.84、147.6 mm,分别占同期降雨量的17.03%、30.12%、23.68%、56.53%;迎风坡坡中、背风坡坡中、背风坡坡底处的累积侧向运移量分别为32.35、96.47、82.59 mm,分别占同期降雨量的12.39%、36.95%、31.63%。迎风坡坡中(P<0.01)和坡顶(P<0.05)的月深层渗漏量与月降雨量均显著正相关;背风坡坡中(P<0.01)和背风坡坡底(P<0.05)的月侧向运移量与降雨量均显著正相关。  相似文献   

12.
降水在沙丘中的运动特征研究——以甘肃民勤沙区为例   总被引:1,自引:1,他引:0  
自然降水和辅助人工模拟降水试验表明在民勤沙区,降水在沙丘上的下渗深度主要受沙面状况的影响。沙丘表层土壤田间持水量大小影响降水下渗,表层粉粒和粘粒含量影响田间持水量,降水量的大小与水分下渗深度的相关性并不显著;降水强度在29.8mm·d-1以内时,固定沙丘上的最大含水层为10~15cm,降水的下渗速率只有10~15cm·d-1;在半固定沙丘上,28.2mm·d-1以内的降水的最大含水层为30~35cm,降水的下渗速率只有15.0~17.5cm·d-1;在流动沙丘上,21.7mm·d-1以内的降水强度的最大含水层为130~135cm,降水的下渗速率可达32.5~33.8cm·d-1;在固定沙丘和流动沙丘上,8mm·d-1以内的降水很快蒸发损失,而在半固定沙丘上能保存较长时间;与固定和半固定沙丘相比,流动沙丘表面水分(即7~8mm以内的降水)最易在短期内蒸发损耗。  相似文献   

13.
青海湖湖东沙地不同沙丘降雨入渗研究   总被引:2,自引:0,他引:2  
降雨入渗对干旱、半干旱区土壤水分的影响很大,降雨量、降雨强度、土壤前期含水量等要素都会影响水分的入渗过程。本文通过监测青海湖湖东沙地3种类型沙丘的土壤水分和降雨情况,对区内降雨特征以及不同要素对沙丘水分入渗的影响进行了分析。结果表明:降雨量只有达到某一临界值才发生下渗,流动沙丘、固定沙丘、经治理(人工植被+麦草方格沙障)的流动沙丘发生下渗的临界降雨量分别为5.6 mm、1.6 mm、0.2 mm。水分累积入渗量随降雨量增大而增加,降雨量相同的情况下,入渗量大小表现为经治理的流动沙丘>固定沙丘>流动沙丘。当降雨量和土壤前期含水量相近时,入渗量随降雨强度的增大而增加,尤其在小降雨事件下,降雨强度是影响入渗的关键因素,大降雨事件下降雨量则成为影响入渗的决定因素。降雨量和降雨强度相近的情况下,入渗量与土壤前期含水量呈负相关关系。随着降雨量增大,入渗水分全部消耗所需要的时间逐渐增加,尤其当降雨量大于10 mm时,入渗水分消耗所需时间将随着降雨量的增大迅速增加。  相似文献   

14.
降雨、灌溉入渗和潜水蒸发在卫宁平原地下水循环中有重要的作用。为了准确评价卫宁平原地下水垂向入渗补给量和蒸发量,通过设立中卫、中宁两个包气带原位试验点,观测期为2013年6月~2013年11月和2014年4月~2014年10月,获取了两个试验点不同埋深处的土壤水负压、温度、岩性及水分运移参数,并采用定位通量法计算试验点的地表蒸散发、入渗量和潜水面蒸发、入渗量。结果显示:在包气带岩性相同、灌溉期相同(7~10月)、总灌溉量相近条件下,作物的灌溉模式决定了灌溉对潜水的补给强度:玉米少次大量(150 mm·次-1)灌溉对潜水的补给量为373.65 mm,远远大于茄子多次小量(50 mm·次-1)的灌溉模式下的152.3 mm;而在包气带岩性相同、种植作物相同、灌溉模式不变的前提下,同时期潜水面净补给强度相近:中宁试验点2013年7~10月份潜水面净通量为32.88 mm,2014年同期为57.42 mm。在降雨情况或灌溉量较小(50 mm)的情况下,植被的生长会阻碍水分在包气带中的下渗;在灌溉量较大(100 mm和150 mm)的情况下,植被的生长会促进包气带水分的下渗。  相似文献   

15.
Liu  Muxing  Wang  Qiuyue  Guo  Li  Yi  Jun  Lin  Henry  Zhu  Qing  Fan  Bihang  Zhang  Hailin 《地理学报(英文版)》2020,30(6):949-968
Rainfall provides essential water resource for vegetation growth and acts as driving force for hydrologic process, bedrock weathering and nutrient cycle in the steep hilly catchment. But the effects of rainfall features, vegetation types, topography, and also their interactions on soil water movement and soil moisture dynamics are inadequately quantified. During the coupled wet and dry periods of the year 2018 to 2019, time-series soil moisture was monitored with 5-min interval resolution in a hilly catchment of the Three Gorges Reservoir Area in China. Three hillslopes covered with evergreen forest(EG), secondary deciduous forest mixed with shrubs(SDFS) and deforested pasture(DP) were selected, and two monitoring sites with five detected depths were established at upslope and downslope position, respectively. Several parameters expressing soil moisture response to rainfall event were evaluated, including wetting depth, cumulative rainfall amount and lag time before initial response, maximum increase of soil water storage, and transform ratio of rainwater to soil water. The results indicated that rainfall amount is the dominant rainfall variable controlling soil moisture response to rainfall event. No soil moisture response occurred when rainfall amounts was 8 mm, and all the deepest monitoring sensors detected soil moisture increase when total rainfall amounts was 30 mm. In the wet period, the cumulative rainfall amount to trigger surface soil moisture response in EG-up site was significantly higher than in other five sites. However, no significant difference in cumulative rainfall amount to trigger soil moisture response was observed among all study sites in dry period. Vegetation canopy interception reduced the transform ratio of rainwater to soil water, with a higher reduction in vegetation growth period than in other period. Also, interception of vegetation canopy resulted in a largeraccumulated rainfall amount and a longer lag time for initiating soil moisture response to rainfall. Generally, average cumulative rainfall amount for initiating soil moisture response during dry period of all sites(3.5–5.6 mm) were less than during wet period(5.7–19.7 mm). Forests captured more infiltration water compared with deforested pasture, showing the larger increments of both soil water storage for the whole soil profile and volumetric soil water content at 10 cm depth on two forest slopes. Topography dominated soil subsurface flow, proven by the evidences that less rainfall amount and less time was needed to trigger soil moisture response and also larger accumulated soil water storage increment in downslope site than in corresponding upslope site during heavy rainfall events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号