首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAROS: a decision support system for optimizing monitoring plans   总被引:3,自引:0,他引:3  
The Monitoring and Remediation Optimization System (MAROS), a decision-support software, was developed to assist in formulating cost-effective ground water long-term monitoring plans. MAROS optimizes an existing ground water monitoring program using both temporal and spatial data analyses to determine the general monitoring system category and the locations and frequency of sampling for future compliance monitoring at the site. The objective of the MAROS optimization is to minimize monitoring locations in the sampling network and reduce sampling frequency without significant loss of information, ensuring adequate future characterization of the contaminant plume. The interpretive trend analysis approach recommends the general monitoring system category for a site based on plume stability and site-specific hydrogeologic information. Plume stability is characterized using primary lines of evidence (i.e., Mann-Kendall analysis and linear regression analysis) based on concentration trends, and secondary lines of evidence based on modeling results and empirical data. The sampling optimization approach, consisting of a two-dimensional spatial sampling reduction method (Delaunay method) and a temporal sampling analysis method (Modified CES method), provides detailed sampling location and frequency results. The Delaunay method is designed to identify and eliminate redundant sampling locations without causing significant information loss in characterizing the plume. The Modified CES method determines the optimal sampling frequency for a sampling location based on the direction, magnitude, and uncertainty in its concentration trend. MAROS addresses a variety of ground water contaminants (fuels, solvents, and metals), allows import of various data formats, and is designed for continual modification of long-term monitoring plans as the plume or site conditions change over time.  相似文献   

2.
A digital elevation model (DEM) of a fluvial environment represented landform surface variability well and provided a medium for monitoring morphological change over time. Elevation was measured above an arbitrary datum using a ground‐based three‐dimensional tacheometric survey in two reaches of the River Nent, UK, in July 1998, October 1998 (after flood conditions) and June 1999. A detailed geostatistical analysis of the elevation data was used to model the spatial variation of elevation and to produce DEMs in each reach and for each survey period. Maps of the difference in elevation were produced and volumetric change was calculated for each reach and each survey period. The parameters of variogram models were used to describe the morphological character of each reach and to elucidate the linkages between process and the form of channel change operating at different spatial and temporal scales. The analysis of channel change on the River Nent shows the potential of geostatistics for investigating the magnitude and frequency of geomorphic work in other rivers. A flood modified the channel features, but low magnitude and high frequency flows rationalized the morphology. In spite of relatively small amounts of net flux the channel features changed as a consequence of the reworking of existing material. The blocking of chute entrances and redirection of the channel had a considerable effect on the behaviour of the channel. Such small changes suggested that the distributary system was sensitive to variation in sediment regime. Plots of the kriging variances against sampling intervals were used to quantify the temporal variation in sampling redundancy (ranging between ?11 per cent and +93 per cent). These curves illustrated the importance of bespoke sampling designs to reduce sampling effort by incorporating anisotropic variation in space and geomorphic information on flow regime. Variation in the nugget parameter of the variogram models was interpreted as sampling inaccuracy caused by variability in particle size and is believed to be important for future work on surface roughness. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The Buck Creek-Boreas River Adirondack Watershed Monitoring Program, located in the Adirondack region of New York State, United States, combines the monitoring of headwater streams, soils, and vegetation based on a watershed design. Continuous monitoring of six watersheds is linked to the sampling of more than 400 additional Adirondack streams between 2003 and 2019 for chemical analysis of 14 constituents throughout the highly valued Adirondack ecoregion that covers an area of more than 24 000 km2. Much of this landscape has a low capacity for acid buffering, but due to spatial variation in geologic features, some areas are moderately to well acid buffered. This program includes data that extends back to the early 1980s and is ongoing. The focus of the program is on the watersheds of headwater Adirondack streams. Soil, vegetation and stream data are used to better understand environmental effects on the linkages of these ecosystem components. Documentation of the long-term responses of Adirondack ecosystems to environmental disturbances such as acid rain, climate change and other unforeseen factors is the primary objective of the program.  相似文献   

4.
Subsequent to an initial wet season flood event in the Brisbane River, Australia, both fast (naked disk) and slow (membrane-covered) variants of SDB-RPS Empore disk passive sampling devices were deployed with an automated grab sampling program. A trend increase in the aquatic dissolved concentrations of diuron and simazine was observed over a 10-day period. Kinetic and equilibrium parameters for each sampler were calculated based on the dynamic concentration. Absolute percent difference for duplicate passive samples was <10% in the fast and <25% in the slow samplers. For kinetic sampling, significantly shortened integrative periods are available with the fast compared with the slow variant, with higher sampling rates offering improved detection limits. The study demonstrates a method for determining kinetic parameters of passive samplers in a variable concentration field deployment, and illustrates the differences in quality between active and passive data, in terms of capturing changes in concentration associated with rainfall events.  相似文献   

5.
Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify key macro-invertebrate taxa that can be used to monitor changes of the water quality in rivers of the Mara basin as a result of anthropogenic changes.  相似文献   

6.
The River Frome was sampled at sub-daily sampling interval, with additional storm sampling, through an annual cycle. Samples were analysed for total phosphorus (TP), soluble reactive phosphorus (SRP), total oxidisable nitrogen (TON) and dissolved reactive silicon (Si). The resulting data set was artificially decimated to mimic sampling frequencies from 12 h to monthly time interval. Monthly sampling interval resulted in significant errors in the estimated annual TP and SRP load of up to 35% and 28% respectively, and the resulting data sets were insufficient to observe peaks in P concentration in response to storm events. Weekly sampling reduced the maximum percentage errors in annual load estimate to 15.4% and 6.5%. TON and silicon concentrations were less variable with changing river flow, and monthly sampling was sufficient to predict annual load estimates to within 10%. However, to investigate within-river nutrient dynamics and behaviour, it is suggested that a weekly sampling interval would be the minimum frequency required for TON and Si studies, and daily sampling would be a minimum requirement to adequately investigate phosphorus dynamics. The loss in nutrient-concentration signal due to reduced sampling interval is presented. Hysteresis in the nutrient concentration/flow relationships for all 32 storm events during the study period were modelled and seasonal patterns discussed to infer nutrient sources and behaviour. The high-resolution monitoring in this study identified, for the first time, major peaks in phosphorus concentration in winter that coincide with sudden falls in air temperature, and was associated with biofilm breakdown. This study has shown that to understand complex catchment nutrient processes, accurately quantify nutrient exports from catchments, and observe changes in water quality as a result of nutrient mitigation efforts over time, it is vital that the newly emerging field-based automated sampler/analyzer technologies begin to be deployed, to allow for routine high-resolution monitoring of our rivers in the future.  相似文献   

7.
An assessment of water quality measurements during a long‐lasting low water period in the Elbe River is presented. Weekly samples were taken from May to December 2003 at a sampling site in the middle part of the Elbe River. For multivariate data analysis, 34 parameters of 46 samplings were considered. As a result of this analysis, 78% of the variance of the data set is explained by five factors. They can be assigned to the following latent variables: season (37.5%) > tributaries (12.7%) > re‐suspension (10.4%) > discharge (9.4%) > complexation (8.5%). For the investigated sampling site, two key processes were identified as dominating factors on the water quality during low water conditions. First, seasonal phytoplankton development caused changes in redox conditions with consequences for re‐solution of pollutants from sediments. Second, tributaries have a higher impact on the main stream, due to changes in mixing processes. Therefore, in addition to flood investigations, monitoring strategies, and management plans should be developed in order to survey changes in water quality during low water conditions.  相似文献   

8.
Sampling frequency for monitoring the actual state of groundwater systems   总被引:4,自引:0,他引:4  
Sampling frequency is a very important variable in the design of a groundwater monitoring network. Given the objective of sampling as monitoring the actual state of groundwater systems, criteria for the determination of sampling frequency can be based on the trend detectability, the accuracy of estimation of periodic fluctuations and the accuracy of estimation of the mean values of the stationary component of the state variables (such as groundwater heads, temperature, and concentration of hydrochemical constituents). The' criteria are applied to the determination of sampling frequency for monitoring groundwater levels around the Spannenburg pumping station. The analysis and verification of the sampling frequency indicate that the most appropriate sampling frequency is once a month.  相似文献   

9.
《Marine pollution bulletin》2009,58(6-12):767-774
The occurrence and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in waters at the eight riverine outlets of the Pearl River Delta (China) were examined based on a monthly sampling program from March 2005 to February 2006. The total concentrations of PAHs in the aqueous phase and suspended particulate matter (SPM) combined ranged from 55.5 to 522 ng/L, at the mid level of the global values in rivers and estuaries. No clear temporal and spatial trends of PAH concentrations were found. However, the concentrations of PAHs associated with SPM coincided with the monthly precipitation of Guangzhou, indicating the importance of atmospheric deposition. The PAHs found in the region were likely derived from a combined pyrolytic and petrogenic origin, as suggested by the molecular indices of PAHs. Normalized partition coefficient (Koc) between water and SPM was correlated with octanol–water partition coefficient (Kow) to understand the environmental behavior of PAHs.  相似文献   

10.
This paper describes the hydrochemistry of a lowland, urbanised river‐system, The Cut in England, using in situ sub‐daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190 000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Although 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in‐stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic, and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

11.
Questions such as what, where, when, and how often to sample play a central role in the development of monitoring strategies. Limited resources will not permit sampling for many contaminants at the same frequency at all well sites. Therefore, a resource allocation strategy is necessary to arrive at answers for the preceding types of questions. Such a strategy for a ground water quality monitoring program is formulated as an integer programming model (an optimization model). The model will be of use in the process of deciding what constituents to sample and where to sample them so as to maximize a given objective, subject to a set of budget, sampling, and regulatory constraints. The maximization objective in the model is defined as a weighted function of population exposure to a scaled measure of observed chemical concentrations. The sampling constraints are based on the observed variability of contaminants in the aquifer, needed precision in estimates, a chosen level of significance, the available budget for implementing the program, and selected regulatory constraints. The model is tested with field data obtained for 10 selected constituents from more than 650 wells in the Cambrian-Ordovician aquifer in Iowa. Results from two alternative formulations of the model are compared, analyzed, and discussed. Further avenues for research are briefly outlined.  相似文献   

12.
Nutrient input from the Changjiang River (Yangtze River) has been increasing dramatically since the 1960s. At the mouth of the Changjiang River, the nitrate concentration has increased about three-fold in 40 years, from 20.5 μmol/L in the 1960s to 59.1 μmol/L in the 1980s and to 80.6 μmol/L in 1990–2004. Phosphate concentration increased by a factor of 30%, from 0.59 μmol/L in the 1980s to 0.77 μmol/L in 1990–2004. The increasing nitrate input has arisen mostly from the mid and lower reaches of the Changjiang River, where the river meets one of the most strongly developed agriculture areas in China. Responses of the coastal phytoplankton community to the increasing nutrient inputs are also seen in the available monitoring data. First, a trend of increasing phytoplankton standing stock from 1984 to 2002 appeared in the Changjiang River estuary and adjacent coastal waters, especially in late spring. Secondly, the proportion of diatoms in the whole phytoplankton community showed a decreasing trend from about 85% in 1984 to about 60% in 2000. Finally, red tides/harmful algal blooms increased dramatically in this area in terms of both number and scale. About 30–80 red tide events were recorded each year from 2000 to 2005 in the East China Sea. The scale of some blooms has been in excess of 10,000 km2.  相似文献   

13.
流域尺度面源污染的监测是系统认识农业面源污染的发生、迁移及转化过程,并对其进行有效控制的重要基础.当前,田块尺度的面源污染监测方法比较成熟,而流域尺度的监测,尤其是监测断面的布设及采样频率设置等方面的研究较少.本文详细梳理了小流域采样断面布设、采样频率优化和河流断面通量估算3方面的主要进展.1)从小流域样点布设来看,包括常规监测采样设计、针对性监测采样设计和融合前两种类型的监测采样设计3种类型,点位布设方法上有遗传算法、模糊逻辑法、熵值法和模型法等,样品采集方式包括随机采样、复合采样、综合采样以及连续采样4种类型,其中复合采样应用广泛;2)从采样频率来看,1~2周一次的采样频率即可精准获取污染负荷通量,若需要进一步提高精度,可在水文/水质变异大的时期提高监测频率及在特殊断面加密布点;3)在通量估算上,当前主要的计算方法有平均法、插值法和回归/曲线法3类方法,其中流量加权的浓度估计法、插值算法和LOADEST法是简便且精确的方法,方法的选择上也可根据不同时期流域污染源特征进一步优化.  相似文献   

14.
三峡澎溪河水-气界面温室气体模型估算及其敏感性分析   总被引:2,自引:0,他引:2  
赫斌  李哲  姚骁  郭劲松  陈永柏  李翀 《湖泊科学》2017,29(3):705-712
模型估算法是水-气界面温室气体通量监测的主要方法,所得成果也不胜枚举.然而监测过程中诸多环境因素会对最终结果产生不确定的影响.结合三峡库区澎溪河背景条件,利用模型估算法进行水-气界面温室气体通量(以CO_2为例)估算,并且采用修正Morris筛选法尝试分析模型估算法中各个参数对温室气体扩散通量(以CO_2为例)的局部敏感性.研究结果表明:利用模型估算法计算三峡澎溪河流域水-气界面温室气体通量具有较高的可行性和可靠性;风速、水温以及pH值会对监测结果产生影响,且风速越强、水温越高、pH值越小,CO_2扩散通量就越大;pH值是高灵敏参数,风速和水温是灵敏参数.在三峡库区澎溪河监测过程中更应注意pH值的精确性,每次采样前需校正仪器.  相似文献   

15.
以流经四川绵阳市安县河流茶坪河为研究对象,在对该河流水污染负荷、水环境现状及水环境功能充分调查的基础上,结合该河流的水文特征和排水规划以及四川省绵阳市环境监测站2005年实测的数据,采用二维浅水水动力学—水质模型方程组对茶坪河的各监测断面CODCr和NH3-N的浓度场进行了计算模拟和对比,并用一维水环境容量计算模型计算了该河流的水环境容量,提出了具体的总量控制措施.结果表明:用二维浅水水动力学—水质模型方程组计算各监测断面的CODCr和NH3-N与实测值相差不大;茶坪河水环境容量CODCr为123.96t/a,NH3-N为42.95t/a,所排放的CODCr量、NH3-N量已经超过该流域容量,出水水质已超过水质保护目标Ⅲ类标准.  相似文献   

16.
A ground water monitoring program should include an investigation of all possible areas of concern. To be completely effective, the program should include soil sampling, soil analysis and water-quality examination of both the saturated and unsaturated zones. A well-tooled drill rig can take all the proper soil samples, perform all necessary tests and install a functional monitoring well. With the introduction of the fluoropolymer (Teflon(r)) sleeve lysimeter, a single monitoring well can be constructed to monitor both the saturated and unsaturated zones in one installation. The monitoring well screen and casing may also be completely constructed of fluoropolymer.
The sleeve lysimeter is designed with a threaded hollow inner diameter, allowing it to be attached between the joints of a casing string. This hollow I.D. acts as an extension of the casing; the lysimeter surrounds the casing. This creates an isolated vessel for sampling the vadose zone. Access to the screened monitoring well below is unaffected. Tests have shown that when properly installed, these porous fluoropolymer filter units can collect samples with no interaction between the filter and collected fluids.  相似文献   

17.
The implementation of the EU Marine Strategy Framework Directive necessitates the development of common criteria and methodological standards for marine environmental monitoring and assessment across Europe. Eelpout (Zoarces viviparus) is proposed as a key indicator organism in the Baltic and North Sea regions. This benthic fish species is widely used in ecotoxicological studies and as a bioindicator of local pollution due to its stationary behavior. Eelpout is included in the environmental monitoring program of several Baltic States, covering both chemical and biological effects measurements, and samples have been archived in environmental specimen banks for >15 years. A method for evaluating the frequency of larval aberrations has been suggested as a standardized assessment tool. The large scientific knowledge-base and considerable experience of long-term chemical and biological effects monitoring and specimen banking, make eelpout a suitable species for the assessment of Good Environmental Status in the Baltic and North Seas.  相似文献   

18.
Richards Bay Harbour is South Africa’s premier bulk cargo port. It was constructed in the Mhlathuze estuary in 1976 and over the past 34 years has become South Africa’s most modern and largest cargo handling port. Although no official monitoring programme is in progress various studies by different groups have provided relevant data with respect to changing metal levels in brown mussel tissue (Perna perna) over the last 34 years. Eleven elements were analysed in brown mussels from the main channel in Richards Bay Harbour using ICP-MS. The results indicate that the metal concentrations in the mussel tissue remained relatively constant between 1974 and 2005. The mean metal concentrations increased significantly in 2005 possibly due to the construction of the new coal terminal and associated dredging activities. Mean metal concentrations in the 2008 sampling event were also elevated due to increased run off during an above average rainy season.  相似文献   

19.
Previous research to assess impacts from aggregate dredging has focussed on infaunal species with few studies made of fish entrainment. Entrainment evidence from hydraulic dredging studies is reviewed to develop a sensitivity index for benthic fish. Environmental monitoring attendant with the granting of new licences in the Eastern Channel Region (ECR) in 2006 offers a unique opportunity to assess the effects of dredging upon fish. Projected theoretical fish entrainment rates are calculated based upon: abundance data from 4m beam trawl sampling of fish species over the period 2005-2008; sensitivity data; and dredging activity and footprint derived from Electronic monitoring System (EMS) data. Results have been compared with actual entrainment rates and also against summary results from independent analysis of the changes in fish population over the period 2005-2008 (Drabble, 2012). The case is made for entrainment surveys to form part of impact monitoring for marine aggregate dredging.  相似文献   

20.
Reduced sampling frequency is known to increase the error associated with estimates of stream solute load. However, the extent to which the magnitude of error differs among commonly measured solutes and across seasons is unclear. In this study, a high sampling frequency data set from two forested streams (one upland‐draining and one wetland‐draining stream) in south‐central Ontario was systematically sub‐sampled to simulate weekly, fortnightly and monthly fixed frequency sampling regimes for 12 stream solutes. We found that solutes which had a higher degree of temporal variation in concentration (i.e. higher %RSD) had poorer precision (Cv) in estimates of annual load relative to solutes with a lower %RSD. In addition, the magnitude and direction of bias varied considerably among solutes and were related to differences in spring concentration‐discharge relationships (m[spring Q vs C]) among the 12 solutes. Solutes which decreased in concentration with increases in spring flow (i.e. m[spring Q vs C] <0) exhibited positive bias in annual load while solutes which increased in concentration with increases in spring flow (i.e. m[spring Q vs C] >0) were negatively biased. In terms of differences between seasonal and annual load errors, precision was generally lower for estimates of seasonal load relative to annual load while bias varied in both magnitude and direction among seasons. When the root mean square error (RMSE) of load estimates was compared to a threshold of acceptable error (<15%), the proportion of solutes attaining acceptable levels of uncertainty ranged from 11/12 for annual load estimates at a weekly sampling frequency to only 4/12 at a monthly frequency when both annual and seasonal loads were considered. Our results demonstrate that commonly measured solutes do not behave uniformly in response to changes in sampling frequency and that estimates of seasonal loads are often less accurate than estimates of annual load. These findings provide important insights into the design of stream monitoring programs and the evaluation of existing long‐term data sets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号