首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and low- temperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5) ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.  相似文献   

2.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

3.
Lightly altered Al-rich inclusions in amoeboid olivine aggregates have cores containing primary melilite + fassaite + spinel + perovskite and no secondary alteration products. In moderately altered inclusions, whose cores now contain only fassaite + spinel + perovskite, melilite was replaced by a fine-grained mixture of grossular + anorthite + feldspathoids and perovskite was partially replaced by ilmenite. In heavily altered inclusions, fassaite has been replaced by a mixture of phyllosilicates + ilmenite and the remaining primary phases are spinel ± perovskite. In very heavily altered inclusions, no primary phases remain, the spinel having reacted to form either phyllosilicates or a mixture of olivine + feldspathoids. This sequence of alteration reactions may reflect successively lower solar nebular equilibration temperatures. During alteration, SiO2, Na2O, K2O, FeO, Cr2O3, H2O and Cl were introduced into the inclusions and CaO was lost. MgO may have been lost during the melilite reaction and added during formation of phyllosilicates. Electron microprobe analyses indicate that the phyllosilicates are a mixture of Na-rich phlogopite and chlorite or Alrich serpentine. Thermodynamic calculations suggest that, at a solar nebular water fugacity of 10−6, Na-rich phlogopite could have formed from fassaite at ~470 K and chlorite from Na-rich phlogopite at ~328 K. Olivine mantling Al-rich inclusions is not serpentinized, suggesting that these objects stopped equilibrating with the nebular gas above 274 K.  相似文献   

4.
Fine-grained Ca-Al-rich inclusions (FGIs) in Yamato-81020 (CO3.0) and Kainsaz (CO3.1-CO3.2) chondrites have been studied by secondary ion mass spectrometry. The FGIs from Yamato-81020 consist of aggregates of hibonite, spinel, melilite, anorthite, diopside and olivine grains with no petrographic evidence of alteration. In contrast, the FGIs from Kainsaz commonly contain alteration products such as nepheline. From replacement textures and chemical compositions of altered and unaltered FGIs, we conclude that the alteration products formed by decomposition of melilite and anorthite. All phases in the Yamato-81020 FGIs are enriched in 16O, with δ17, 18O = ∼−40‰ except for one FGI that experienced melting. Oxygen isotopic compositions of melilite, anorthite, some spinel and diopside in Kainsaz FGIs changed from δ17, 18O = ∼−40‰ toward 0‰ by aqueous alteration. Alteration products in FGIs are depleted in 16O relative to primary phases, with δ17, 18O = ∼0‰. These results show that FGIs in CO chondrites commonly had 16O-rich compositions in the solar nebula. The original 16O-rich FGIs were modified to 16O-poor compositions during aqueous alteration in the parent body.  相似文献   

5.
The petrography and mineral chemistry of 110 Ca-, Al-rich inclusions (CAIs) and 9 Ca- and/or Al-rich amoeboid olivine aggregates (AOAs) from the Ningqiang carbonaceous chondrite are reported. These CAIs are referred to as hibonite-bearing and hibonite-free melilite-spinel-rich (Type A), and spinel-pyroxene inclusions. Melilite is more gehlenitic in the hibonite-bearing Type As than in the other two types, and all of them vary within a range of Åk0-30. Modal compositions of the three types of CAIs overlap with each other, and make up a continuum with wide ranges of melilite: spinel: diopside. The diopside occurs as rims on the CAIs or their individual concentric objects. The 9 AOAs contain spinel ± diopside ± anorthite in the centers of the aggregates; the spinel grains rimmed by diopside in the centers are similar to the spinel-pyroxene inclusions. Bulk compositions of these CAIs vary along the condensation trajectory, with the hibonite-bearing Type As plotting at the beginning followed by hibonite-free Type As then by spinel-pyroxene inclusions as temperature decreases. Bulk compositions of the AOAs are close to the lowest temperature condensation trajectory. Except for a few with compact textures, most of the Type As and spinel-pyroxene inclusions are fluffy aggregates, probably pristine vapor-solid condensates of the nebula.The bulk compositions of the Type As appear to overlap with the range of most melilite-Ti-Al-clinopyroxene-rich (Type B) inclusions. Hence, crystallization of liquids produced by melting the Type As can form Type B inclusions, without significant evaporative loss of MgO or SiO2. A few Type Bs have bulk compositions deviating from the range of their proposed precursors, and may have suffered significant evaporation, as suggested in previous studies.  相似文献   

6.
The condensation temperatures are calculated for a number of refractory trace metals from a gas of solar composition at 10?3 and 10?4 atm. total pressure. Instrumental neutron activation analysis of Ca-Al-rich inclusions in the Allende carbonaceous chondrite reveals enrichments of 22.8 ± 2.2 in the concentrations of Ir, Sc and the rare earths relative to Cl chondrites. Such enrichments cannot be due to magmatic differentiation processes because of the marked differences in chemical behavior between Ir and Sc, exhibited by their distributions in terrestrial igneous rocks and meteorites. All of these elements should have condensed from a cooling gas of solar composition above or within the range of condensation temperatures of the major mineral phases of the inclusions, which suggests that these inclusions are high-temperature condensates from the primitive solar nebula. Gas-dust fractionation of these materials may have been responsible for the depletion of refractory elements in the ordinary and enstatite chondrites relative to the carbonaceous chondrites.  相似文献   

7.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   

8.
The recently discovered metal-rich carbonaceous chondrite Isheyevo consists of Fe, Ni-metal grains, chondrules, heavily hydrated matrix lumps and rare refractory inclusions. It contains several lithologies with mineralogical characteristics intermediate between the CH and CB carbonaceous chondrites; the contacts between the lithologies are often gradual. Here we report the mineralogy and petrography of chondrules in the metal-rich (70 vol%) and metal-poor (20 vol%) lithologies. The chondrules show large variations in textures [cryptocrystalline, skeletal olivine, barred olivine, porphyritic olivine, porphyritic olivine-pyroxene, porphyritic pyroxene], mineralogy and bulk chemistry (magnesian, ferrous, aluminum-rich, silica-rich). The porphyritic magnesian (Type I) and ferrous (Type II) chondrules, as well as silica- and Al-rich plagioclase-bearing chondrules are texturally and mineralogically similar to those in other chondrite groups and probably formed by melting of mineralogically diverse precursor materials. We note, however, that in contrast to porphyritic chondrules in other chondrite groups, those in Isheyevo show little evidence for multiple melting events; e.g., relict grains are rare and igneous rims or independent compound chondrules have not been found. The magnesian cryptocrystalline and skeletal olivine chondrules are chemically and mineralogically similar to those in the CH and CB carbonaceous chondrites Hammadah al Hamra 237, Queen Alexandra Range 94411 (QUE94411) and MacAlpine Hills 02675 (MAC02675), possibly indicating a common origin from a vapor–melt plume produced by a giant impact between planetary embryos; the interchondrule metal grains, many of which are chemically zoned, probably formed during the same event. The magnesian cryptocrystalline chondrules have olivine–pyroxene normative compositions and are generally highly depleted in Ca, Al, Ti, Mn and Na; they occasionally occur inside chemically zoned Fe, Ni-metal grains. The skeletal olivine chondrules consist of skeletal forsteritic olivine grains overgrown by Al-rich (up to 20 wt% Al2O3) low-Ca and high-Ca pyroxene, and interstitial anorthite-rich mesostasis. Since chondrules with such characteristics are absent in ordinary, enstatite and other carbonaceous chondrite groups, the impact-related chondrule-forming mechanism could be unique for the CH and CB chondrites. We conclude that Isheyevo and probably other CH chondrites contain chondrules of several generations, which may have formed at different times, places and by different mechanisms, and subsequently accreted together with the heavily hydrated matrix lumps and refractory inclusions into a CH parent body. Short-lived isotope chronology, oxygen isotope and trace element studies of the Isheyevo chondrules can provide a possible test of this hypothesis.  相似文献   

9.
Mineralogic study of black inclusions in the Cumberland Falls enstatite achondrite revealed that they constitute a highly unequilibrated chondritic suite distinct from other chondrite groups. This highly shocked suite, the forsterite (F) chondrites, exhibits mineralogic trends apparently produced during primary nebular condensation and accretion over a broad redox range. We analyzed these samples and possibly related meteorites for Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U and Zn, trace elements known to yield important genetic information. The results demonstrate the compositional coherence and distinctiveness of the F chondrite suite relative to other chondrites. The Antarctic aubrite, ALH A78113, may include more F chondrite material. Trace element contents do not vary with mineral compositions hence do not reflect redox variations during formation of F chondrite parental matter. Trace element mobilization—during secondary heating episodes in the F chondrite parent or during its disruptive collision with the enstatite meteorite parent body—is not detectable. Chemical trends in F chondrites apparently reflect primary nebular processes. Cosmochemical fractionation of lithophiles from siderophiles and chalcophiles occurred at moderately high temperatures, certainly higher than those existing during formation of primitive carbonaceous, enstatite and ordinary chondrites of petrologic type ≤3.  相似文献   

10.
本文研究了2个富钙长石-橄榄石型包体和2个富黄长石-尖晶石型和富尖晶石-辉石型包体(分别来自宁强和南极格罗夫山碳质球粒陨石)的矿物岩石学特征,并对它们进行了对比。富钙长石-橄榄石型包体的矿物模式组成具有富橄榄石和缺失黄长石的特征,其可能是球粒和典型难熔包体之间的中间产物,是认识它们之间相互关系的钥匙。矿物岩石学特征表明富黄长石-尖晶石型和富尖晶石-辉石型包体可能是星云直接凝聚的产物,而富钙长石-橄榄石型包体经历过熔融结晶过程。富钙长石-橄榄石型包体的初始物质可能是富Al的球粒或含难熔组分的蠕虫状橄榄石集合体。矿物化学组成对比研究发现,GRV 022459-RI6中的尖晶石具有最富FeO的特征,表明包体的蚀变可能发生在高氧逸度的星云环境。  相似文献   

11.
Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation.Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.  相似文献   

12.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

13.
We review models of chondrite component transport in the gaseous protoplanetary disk. Refractory inclusions were likely transported by turbulent diffusion and possible early disk expansion, and required low turbulence for their subsequent preservation in the disk, possibly in a dead zone. Chondrules were produced locally but did not necessarily accrete shortly after formation. Water may have been enhanced in the inner disk because of inward drift of solids from further out, but likely not by more than a factor of a few. Incomplete condensation in chondrites may be due to slow reaction kinetics during temperature decrease. While carbonaceous chondrite compositions might be reproduced in a “two-component” picture (Anders, 1964), such components would not correspond to simple petrographic constituents, although part of the refractory element fractionations in chondrites may be due to the inward drift of refractory inclusions. Overall, considerations of chondrite component transport alone favor an earlier formation for carbonaceous chondrites relative to their non-carbonaceous counterparts, but independent objections have yet to be resolved.  相似文献   

14.
The thermal history of a series of EH3 and EL3 chondrites has been investigated by studying the degree of structural order of the organic matter (OM) located and characterized in matrix areas by Raman micro-spectroscopy. By comparison with unequilibrated ordinary chondrites (UOCs) and CO and CV carbonaceous chondrites, the following petrologic types have been assigned to various E chondrites: Sahara 97096 and Allan Hills 84206: 3.1-3.4; Allan Hills 85170 and Parsa: 3.5; Allan Hills 85119: 3.7; Qingzhen, MacAlpine Hills 88136 and MacAlpine Hills 88184: 3.6-3.7. The petrologic type of Qingzhen is consistent with the abundance of the P3 noble gas component, a sensitive tracer of the grade of thermal metamorphism. The petrologic types are qualitatively consistent with the abundance of fine-grained matrix for the whole series. No significant effects of shock processes on the structure of OM were observed. However such processes certainly compete with thermal metamorphism and the possibility of an effect cannot be fully discarded, in particular in the less metamorphosed objects. The OM precursors accreted by the EH3 and EL3 parent bodies appear to be fairly similar to those of UOCs and CO and CV carbonaceous chondrites. Raman data however show some slight structural differences that could be partly accounted for by shock processes. The metamorphic history of EH3 and EL3 chondrites has often been described as complex, in particular regarding the combined action of shock and thermal metamorphism. Because OM maturity is mostly controlled by the temperature of peak metamorphism, it is possible to distinguish between the contributions of long duration thermal processes and that of shock processes. Comparison of the petrologic types with the closure temperatures previously derived from opaque mineral assemblages has revealed that the thermal history of EH3 and EL3 chondrites is consistent with a simple asteroidal onion shell model. Thermal metamorphism in enstatite chondrites appears to be fairly similar to that which takes place in other chondrite classes. The complex features recorded by mineralogy and petrology and widely reported in the literature appear to be mostly controlled by shock processes.  相似文献   

15.
Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and  相似文献   

16.
This work presents new trace element and petrographic data for three forsterite-bearing, Ca-Alrich inclusions from the Allende meteorite: TE, 818a, and 110-A. Such inclusions form a continuum with Type B1 and B2 Ca-Al-rich inclusions (CAIs), and we refer to them as “Type B3” CAIs. Textures, mineral chemistries, crystal-chemically fractionated REE patterns, and other properties suggest that Type B3 crystallized from partly molten evaporative residues. The concentrations of refractory lithophile elements are lower than in Type B1 and Type B2, in approximately inverse proportion to the higher concentrations of Mg and Si in the Type B3's. The refractory trace element abundances of the forsterite-bearing, isotopically anomalous FUN CAIs TE and CG14 suggest that they formed at higher temperatures and under more oxidizing conditions than other Type B CAIs, thus strengthening the previously observed link between relatively oxidized CAI compositions and FUN properties.We also present evidence that 818a was strongly re-heated and modified in the nebula after its initial crystallization: it consists of a core of coarse-grained Ti-Al-pyroxene (Tpx), forsterite, spinel and metal grains and a thick, surrounding mantle of melilite that has been almost totally converted to fine-grained alteration products. In the core, the mean concentrations of refractory lithophiles and siderophiles are similar (both ~ 14 × CI), but in the mantle, the refractory siderophiles are a factor of 2 lower (~ 9 × CI) than the refractory lithophiles (~18 × CI). Because the core and mantle display similar, mineralogically-fractionated REE patterns (both sloping up from La to Lu), the pre-alteration mantle could not have formed during fractional crystallization of the primary CAI nor as a later condensate over the core. A 3-stage formation process is required for 818a: (1) crystallization of the primary CAI rich in Tpx throughout; (2) re-heating and partial volatilization of Mg and Si from the outer portion of the CAI, causing an increase in the concentration of refractory lithophiles, a loss of siderophiles, and converting Tpx to melilite; (3) metasomatic alteration of the melilite-rich mantle.  相似文献   

17.
Allende “fluffy” Type A's (FTA's) are a distinct sub-group of Ca-, Al-rich inclusions whose primary mineral assemblage consists of Al-rich melilite (Åk 0–33), spinel that is commonly very V-rich, perovskite and, frequently, hibonite. Some contain relatively coarse-grained melilite (up to 1.5 mm) that is intensely kink-banded and commonly reversely-zoned, hibonite and V-rich spinel. Others contain much finer-grained and strain-free melilite (?50 μm) and have not been found to contain hibonite or V-rich spinel. Some FTA's contain both coarser- and finer-grained melilite and textural relationships indicate that the latter is replacing the former. FTA's are characterized by extremely irregular shapes and 60–75 volume per cent of fine-grained, secondary alteration products. Many are aggregates of innumerable nodules, each of which is surrounded by a Wark-Lovering-type rim sequence. These nodules are frequently separated from one another by matrix-like clastic rim material. Other FTA's do not have nodular structure. Structural and mineralogical characteristics of their Wark-Lovering rims suggest that FTA's did not achieve their shapes by deformation of a liquid or a hot, plastic solid. In contrast to those in Type B inclusions, formation of reverse zoning in the coarser-grained melilite crystals in FTA's cannot be understood in terms of crystallization from a liquid but are readily explainable by condensation from a solar nebular gas during a period of falling pressure. Further evidence against a liquid origin is the wide range of spinel compositions within individual coarser-grained FTA's. The fact that the reversely-zoned melilite crystals cannot have been produced in any kind of sublimation or distillation process precludes formation of these inclusions as volatilization residues. FTA's are aggregates in some of which are preserved vapor-solid condensate grains that formed at high temperature in the solar nebula.  相似文献   

18.
A coordinated mineralogical and oxygen isotopic study of four fine-grained calcium-, aluminum-rich inclusions (CAIs) from the ALHA77307 CO3.0 carbonaceous chondrite was conducted. Three of the inclusions studied, 05, 1-65, and 2-119, all have nodular structures that represent three major groups, melilite-rich, spinel-rich, and hibonite-rich, based on their primary core mineral assemblages. A condensation origin was inferred for these CAIs. However, the difference in their primary core mineralogy reflects unique nebular environments in which multiple gas-solid reactions occurred under disequilibrium conditions to form hibonite, spinel, and melilite with minor perovskite and Al,Ti-rich diopside. A common occurrence of a diopside rim on the CAIs records a widespread event that marks the end of their condensation as a result of isolation from a nebular gas. An exception is a rare inclusion 2-112 that contains euhedral spinel crystals embedded in melilite, suggesting this CAI had been re-melted. All of the fine-grained CAIs analyzed in ALHA77307 are 16O-rich with an average Δ17O value of ∼−22 ± 5‰ (2σ), indicating no apparent correlation between their textures and oxygen isotopic compositions. We therefore conclude that a prevalent 16O-rich gas reservoir existed in a region of the solar nebula where CO3 fine-grained CAIs formed, initially by condensation and then later, some of them were reprocessed by melting event(s).  相似文献   

19.
The abundances of the highly siderophile elements (HSE) Re, Os, Ir, Ru, Pt, Rh, Pd and Au, and 187Os/188Os isotope ratios have been determined for a set of carbonaceous, ordinary, enstatite and Rumuruti chondrites, using an analytical technique that permits the precise and accurate measurement of all HSE from the same digestion aliquot. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS analysis. The monoisotopic elements Rh and Au were quantified relative to the abundance of Ir.Differences in HSE abundances and ratios such as Re/Os, 187Os/188Os, Pd/Ir and Au/Ir between different chondrite classes are further substantiated with new data, and additional Rh and Au data, including new data for CI chondrites. Systematically different relative abundances of Rh between different chondrite classes are reminiscent of the behaviour of Re. Carbonaceous chondrites are characterized by low average Rh/Ir of 0.27 ± 0.03 (1s) which is about 20% lower than the ratio for ordinary (0.34 ± 0.02) and enstatite chondrites (EH: 0.33 ± 0.01; EL: 0.32 ± 0.01). R chondrites show higher and somewhat variable Rh/Ir of 0.37 ± 0.07.Well-defined linear correlations of HSE, in particular for bulk samples of ordinary and EL chondrites, are explained by binary mixing and/or dilution by silicates. The HSE carriers responsible for these correlations have a uniform chemical composition, indicating efficient homogenization of local nebular heterogeneities during or prior to the formation of the host minerals in chondrite components. Excepting Rumuruti chondrites and Au in carbonaceous chondrites, these correlations also suggest that metamorphism, alteration and igneous processes had negligible influence on the HSE distribution on the bulk sample scale.Depletion patterns for Rh, Pd and Au in carbonaceous chondrites other than CI are smoothly related to condensation temperatures and therefore consistent with the general depletion of moderately volatile elements in carbonaceous chondrites. Fractionated HSE abundance patterns of ordinary, enstatite and Rumuruti chondrites, however, are more difficult to explain. Fractional condensation combined with the removal of metal phases at various times, and later mixing of early and late formed metal phases may provide a viable explanation. Planetary fractionation processes that may have affected precursor material of chondrite components cannot explain the HSE abundance patterns of chondrite groups. HSE abundances of some, but not all Rumuruti chondrites may be consistent with solid sulphide-liquid sulphide fractionation processes during impact induced melting.  相似文献   

20.
We have analyzed the Y/Ho-ratios in bulk chondrites, chondrules and four Ca- and Al-rich inclusions (CAIs) from carbonaceous and unequilibrated ordinary and enstatite chondrites (EC) by laser ablation inductively coupled mass spectrometry (LA-ICPMS). We demonstrate that bulk rock sample preparation by containerless melting is a suitable method for preparation of bulk rock samples for high-precision LA-ICPMS. Bulk chondrites have variable Y/Ho-ratios. Carbonaceous chondrites (CI1, CM2, CV3, and CK4) have a common Y/Ho-ratio (25.94 ± 0.08, 2σ) that is regarded as the solar system Y/Ho-ratio. The Y/Ho-ratio increases from carbonaceous, through ordinary (LL, L, H) to enstatite chondrites (EL6), which show the highest Y/Ho-ratio of 27.25. We discuss the result with respect to the origin of fractionation of Re and Os between chondrite groups. Within analytical error, Y and Ho show a good correlation in OC and CV3 chondrules and define an Y/Ho-ratio of 26.22 ± 0.40 (2σ). Y/Ho-fractionation in Ca- and Al-rich inclusions is related to differences in volatility. The bulk silicate Earth is suggested to have a solar Y/Ho-ratio and links the Earth with carbonaceous chondrites. Y/Ho variations in primitive and differentiated terrestrial igneous rocks are discussed in framework of incompatibility of Y and Ho during partial melting. Applicability of Y/Ho as tracer for or against a sedimentary origin of the putative host rock of the Earth’s oldest traces of life from the island of Akilia is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号