首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorine in submarine volcanic glasses from the eastern manus basin   总被引:4,自引:0,他引:4  
Submarine volcanic glasses from the eastern Manus Basin of Papua New Guinea, ranging from basalt to rhyodacite, clarify the geochemical behavior of Cl in arc-type magmas. For the Manus samples, Cl is well correlated with non-volatile highly incompatible trace elements, suggesting it was not highly volatile and discounting significant seawater contamination. The Cl partition coefficient is close to but slightly lower than that of Nb and K2O, a behavior similar to that in mid-ocean ridge basalts (MORB) and ocean island basalts (OIB). The similar incompatibilities of Cl and Nb imply that the Cl/Nb values of the eastern Manus Basin glasses reflect their magma source. For glasses from other west Pacific back-arc basins, Cl/Nb, Ba/Nb, and U/Nb increase towards the subduction trench, indicating increased contribution of a component enriched in Cl, Ba, and U, likely from subduction-released slab fluids. It is estimate that ∼80% of the Cl in the Manus arc-type glasses was added directly from subducted slab-derived fluids. We have also modeled Cl behavior during magma evolution in general. Our results show that the behavior of Cl in magma is strongly influenced by pressure, initial H2O content, and the degree of magmatic fractionation. At early stages of magmatic evolution, for magmas with initial H2O content of <4.0 wt%, Cl is highly incompatible under all pressures. By contrast, for more evolved magmas at moderately high pressure and high H2O contents, considerable amounts of Cl can be extracted from the magma once H2O saturation is reached. Accordingly, Cl is usually highly incompatible in MORB and OIB because of their low H2O contents and relatively low degrees of fractional crystallization. The behavior of Cl in arc magmas is more complicated, ranging from highly incompatible to compatible depending on H2O content and depth of magma chambers. The behavior of Cl in the eastern Manus Basin magmas is consistent with low H2O contents (1.1-1.7 wt%) and evolution at low pressures (<0.1 GPa). Modeling results also indicate that Cl will behave differently in intrusive rocks compared to volcanic rocks because of the different pressures involved. This may have a strong influence on the mechanisms of ore genesis in these two tectonic settings.  相似文献   

2.
The abundances of F, Cl and S in arc magmas are systematically higher than in other mantle‐derived magmas, suggesting that these elements are added from the slab along with H2O. We present ion probe microanalyses of F, Cl and S in serpentine minerals that represent the P–T evolution of the oceanic lithosphere, from its serpentinization at the ridge, to its dehydration at around 100 km depth during subduction. F, Cl and S are incorporated early into serpentine during its formation at mid‐ocean ridges, and serpentinized lithosphere then carries these elements to subduction zones. More than 50% of the F, Cl and S are removed from serpentine during the prograde metamorphic lizardite/antigorite transition. Due to the low solubility of F in water, and to the low amount of water released during this phase transition, the fluids mobilizing these elements must be dominated by SOX rather than H2O.  相似文献   

3.
Using our database of the compositions of melt inclusions and quenched glasses of basaltic magmas from mid-ocean ridges (MORB), the average concentrations and ratios of H2O, Cl, F, S, K2O, Ce, and Dy were determined in these magmas. Assuming that the concentration ratios of volatile components to K2O are constant in the MORB magmas and their sources (depleted mantle, DM), and taking an average K2O content in the DM of 72 ppm, the following average contents were estimated for the DM: 158 ppm H2O, 6.6 ppm Cl, and 8.3 ppm F. Using an S/Dy ratio of 212 for MORB melts and a Dy concentration of 0.531 ppm in the DM, the concentration of S in the DM was estimated as 113 ppm. Our value for the average content of Cl is much higher than estimates obtained by other authors. This discrepancy could be due either to the assimilation of crustal (and hydrospheric) Cl by MORB magmas or to the deep mantle recycling of Cl. The latter mechanism is supported by the statistically significant positive correlation of Cl with K2O, H2O, and F. Such a correlation is not consistent with the hypothesis of basaltic magma contamination by seawater-derived chloride brines. Similar to other surface processes, the assimilation of crustal material operates within the existing global correlations and disturbs them. Based on the average integrated degree of mantle melting and the average degree of MORB magma differentiation (0.05), the average contents of potassium and volatile components in N-MORB and E-MORB mantle sources were estimated as 39 and 126 ppm K2O, 103 and 197 ppm H2O, 4.0 and 10.7 ppm Cl, and 3.9 and 9.1 ppm F, respectively. It is not likely that normal MORB magmas can be derived from depleted mantle that experienced a previous partial melting event (for instance, during the extraction of the primordial continental crust in the Early Precambrian), which was referred to as the ultradepleted mantle. Ordinary (not ultradepleted) MORB magmas can be derived either by the melting of a zone enriched DM (for instance, progressively enriched in incompatible components with depth), which is hardly possible, or by the continuous addition (mixing) of an enriched component to the ultradepleted mantle at the expense of sediments and crustal materials involved in deep recycling.  相似文献   

4.
We have performed phase equilibrium experiments in the system forsterite–enstatite–pyrope-H2O with MgCl2 or MgF2 at 1,100 °C and 2.6 GPa to constrain the solubility of halogens in the peridotite mineral assemblage and the fluid–mineral partition coefficients. The chlorine solubility in forsterite, enstatite and in pyrope is very low, 2.1–3.9 and 4.0–11.4 ppm, respectively, and it is independent of the fluid salinity (0.3–30 wt% Cl), suggesting that some intrinsic saturation limit in the crystal is reached already at very low chlorine concentrations. Chlorine is therefore exceedingly incompatible in upper-mantle minerals. The fluorine solubility is 170–336 ppm in enstatite and 510–1,110 ppm in pyrope, again independent of fluid salinity. Forsterite dissolves 1,750–1,900 ppm up to a fluid salinity of 1.6 wt% F. At higher fluorine contents in the system, forsterite is replaced by the minerals of the humite group. The lower solubility of chlorine by three orders of magnitude when compared to fluorine is consistent with increasing lattice strain. Fluid–mineral partition coefficients are 100–102 for fluorine and 103–105 for chlorine. Since the latter values are orders of magnitude higher than those for hydroxyl partitioning, fluid flow from the subducting slab through the mantle wedge will lead to an efficient sequestration of H2O into the nominally anhydrous minerals in the wedge, whereas chlorine becomes enriched in the residual fluid. Simple mass balance calculations reveal that rock–fluid ratios of up to >3,000 are required to produce the elevated Cl/H2O ratios observed in some primitive arc magmas. Accordingly, fluid flow from the subducted slab into the zone of melting in the mantle wedge does not only occur rapidly in narrow channels, but at least in some subduction zones, fluid pervasively infiltrates the mantle peridotite and interacts with a large volume of the mantle wedge. Together with the Cl/H2O ratios of primitive arc magmas, our data therefore constrain the fluid flow regime below volcanic arcs.  相似文献   

5.
Liquidus phase relationships have been determined for a high-MgO basalt (STV301: MgO=12.5 wt%, Ni=250 ppm, Cr=728 ppm) from Black Point, St Vincent (Lesser Antilles arc). Piston-cylinder experiments were conducted between 7.5 and 20 kbar under both hydrous and oxidizing conditions. AuPd capsules were used as containers. Compositions of supraliquidus glasses and mass-balance calculations show that Fe loss is < 10% in the majority of experiments. Two series of water concentrations in melt were investigated: (i) 1.5 wt% and (ii) 4.5 wt% H2O, as determined by SIMS analyses on quenched glasses and with the by difference technique. The Fe3+/Fe2+ partitioning between Cr-Al spinel and melt and olivine-spinel equilibria show that oxidizing fO2 were imposed (NNO + 1.5 for the 1.5 wt% H2O series, NNO + 2.3 for the 4.5 wt% H2O series). For both series of water concentrations, the liquid is multiply-saturated with a spinel lherzolite phase assemblage on its liquidus, at 1235°C, 11.5 kbar (1.5 wt% H2O) and 1185°C, 16 kbar (4.5 wt% H2O). Liquidus phases are homogeneous and comparable to typical mantle compositions. Mineral-melt partition coefficients are generally identical to values under anhydrous conditions. The modal proportion cpx/opx on the liquidus decreases from the 1.5 wt% to the 4.5 wt% H2O series. The experimental data are consistent with STV301 being a product of partial melting of lherzolitic mantle. Conditions of multiple saturation progressively evolve toward lower temperatures and higher pressures with increasing melt H2O concentration. Phase equilibria constraints, i.e., the necessity of preserving the mantle signature seen in high-MgO and picritic arc basalts, and glass inclusion data suggest that STV301 was extracted relatively dry (∼ 2 wt% H2O) from its mantle source. However, not all primary arc basalts are extracted under similarly dry conditions because more hydrous melts will crystallize during ascent and will not be present unmodified at the surface. From degrees of melting calculated from experiments on KLB-1, extraction of a 12.5 wt% MgO melt with ∼ 2 wt% H2O would require a H2O concentration of 0.3 wt% in the sub-arc mantle. For mantle sources fluxed with a slab-derived hydrous component, extracted melts may contain up to ∼ 5.5 wt% H2O.  相似文献   

6.
After more than a decade of multidisciplinary studies of the Central American subduction zone mainly in the framework of two large research programmes, the US MARGINS program and the German Collaborative Research Center SFB 574, we here review and interpret the data pertinent to quantify the cycling of mineral-bound volatiles (H2O, CO2, Cl, S) through this subduction system. For input-flux calculations, we divide the Middle America Trench into four segments differing in convergence rate and slab lithological profiles, use the latest evidence for mantle serpentinization of the Cocos slab approaching the trench, and for the first time explicitly include subduction erosion of forearc basement. Resulting input fluxes are 40–62 (53) Tg/Ma/m H2O, 7.8–11.4 (9.3) Tg/Ma/m CO2, 1.3–1.9 (1.6) Tg/Ma/m Cl, and 1.3–2.1 (1.6) Tg/Ma/m S (bracketed are mean values for entire trench length). Output by cold seeps on the forearc amounts to 0.625–1.25 Tg/Ma/m H2O partly derived from the slab sediments as determined by geochemical analyses of fluids and carbonates. The major volatile output occurs at the Central American volcanic arc that is divided into ten arc segments by dextral strike-slip tectonics. Based on volcanic edifice and widespread tephra volumes as well as calculated parental magma masses needed to form observed evolved compositions, we determine long-term (105 years) average magma and K2O fluxes for each of the ten segments as 32–242 (106) Tg/Ma/m magma and 0.28–2.91 (1.38) Tg/Ma/m K2O (bracketed are mean values for entire Central American volcanic arc length). Volatile/K2O concentration ratios derived from melt inclusion analyses and petrologic modelling then allow to calculate volatile fluxes as 1.02–14.3 (6.2) Tg/Ma/m H2O, 0.02–0.45 (0.17) Tg/Ma/m CO2, and 0.07–0.34 (0.22) Tg/Ma/m Cl. The same approach yields long-term sulfur fluxes of 0.12–1.08 (0.54) Tg/Ma/m while present-day open-vent SO2-flux monitoring yields 0.06–2.37 (0.83) Tg/Ma/m S. Input–output comparisons show that the arc water fluxes only account for up to 40 % of the input even if we include an “invisible” plutonic component constrained by crustal growth. With 20–30 % of the H2O input transferred into the deeper mantle as suggested by petrologic modeling, there remains a deficiency of, say, 30–40 % in the water budget. At least some of this water is transferred into two upper-plate regions of low seismic velocity and electrical resistivity whose sizes vary along arc: one region widely envelopes the melt ascent paths from slab top to arc and the other extends obliquely from the slab below the forearc to below the arc. Whether these reservoirs are transient or steady remains unknown.  相似文献   

7.
Garnets in UHP eclogites from Bixiling in Dabieshan were investigated by Fourier transform infrared spectroscopy (FTIR). The results indicate that all garnets contain structural water that occurs as hydroxyl (OH) and non-structural molecular water (H2O) possibly in the form of sub-microscopic fluid inclusions. The structural hydroxyl contents range from 92 to 1735 ppm (H2O wt.) and most are between 200 and 1000 ppm. Therefore, garnet in eclogite can recycle surface water into the mantle. Various water contents were observed among different samples of the same outcrop (∼150 m) and in different domains of the same sample (∼1 cm). This variability in structural H2O contents suggests that the mobility of fluids during UHP metamorphism was very limited, and that both subduction and exhumation processes of UHP rocks occurred in a short time interval.  相似文献   

8.
Various enriched recycled oceanic components in the source of Cenozoic intra-plate alkaline basalts from eastern China were identified by previous studies. Due to the existence of a stagnant subducted Pacific slab in the mantle transition zone beneath eastern China, it is logical to connect the stagnant slab to the recycled oceanic materials. However, the recycled oceanic materials could also result from ancient subduction events (e.g., Paleo-Tethyan, Paleo-Asian or Izanagi plate subduction) because enriched geochemical signatures of a recycled slab can be preserved in the mantle for longer than 1 Gyr. Investigating the temporal variations of the recycled oceanic materials in the mantle source is a useful way to trace the origin of the basalts. In this article, we have conducted a detailed geochemical study, including major and trace elements and Sr–Nd–Pb isotopes, on two alkaline basalt groups from Zhejiang, SE China, which erupted 26–17 Ma and after 11 Ma, respectively. In particular, we recovered the H2O content of the initial magmas based on the H2O content of the clinopyroxene (cpx) phenocrysts and the partition coefficients of H2O between cpx and basaltic melts. The H2O contents of the Zhejiang basalts range from 1.3 to 2.6 (wt.%), which fall within the range of back-arc basin or island arc basalts. The older basalts are more alkaline and have lower Si and Al contents; higher trace element concentrations; higher La/Yb, Ce/Pb and Nb/La ratios; lower H2O/Ce and Ba/Th ratios; and stronger negative K, Pb, Hf and Ti anomalies than the younger ones. The co-relationships between Ba/La, H2O/Ce, Nb/La, Ce/Pb and Ba/Th in the two groups of the Zhejiang basalts indicate that a recycled dehydrated oceanic alkaline basalt component is needed in the source of the older rocks, along with a depleted mantle component. Meanwhile, an additional recycled dehydrated sediment component was required in the source of the younger rocks. The temporal change in the recycled oceanic materials in the mantle sources of Zhejiang Cenozoic basalts demonstrates that the recycled components can only originate in the stagnant Pacific slab that is the only plate subducted since 100 Ma in this area.  相似文献   

9.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

10.
11.
Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤?8 wt% H2O). CO2 contents are generally low (<?650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (<?3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (<?140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (<?569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3?±?2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.  相似文献   

12.
WALLACE  PAUL J. 《Journal of Petrology》2002,43(7):1311-1326
Submarine pillow basalts (34 Ma) recovered from the NorthernKerguelen Plateau at ODP Site 1140 contain abundant unalteredglass, providing the first opportunity to measure the volatilecontents of tholeiitic basaltic magmas related to the Kerguelenmantle plume. The glasses have La/Sm and Nb/Zr ratios that varyfrom values similar to Southeast Indian Ridge (SEIR) MORB (Unit1), to slightly more enriched (Unit 6), to values transitionalbetween SEIR MORB and basaltic magmas formed by melting of theKerguelen plume (Units 2 and 3). Volatile contents for glassesin Units 1 and 6 are similar to depleted mid-ocean ridge basalt(MORB) values (0·25–0·27 wt % H2O, 1240–1450ppm S, 42–54 ppm Cl). In contrast, H2O contents are higherfor the enriched glasses (Unit 2, 0·44 wt % H2O; Unit3, 0·69 wt %), as are S (1500 ppm) and Cl (146–206ppm). Cl/K ratios for all glasses are relatively low (0·03–0·04),indicating that assimilation of hydrothermally altered materialdid not occur during shallow-level crystallization. H2O/Ce forthe enriched glasses (Units 2 and 3) is significantly lowerthan Pacific and South Atlantic MORB values, suggesting thatlow H2O/Ce may be an inherent characteristic of the Kerguelenplume source. Vapor saturation pressures calculated using theH2O and CO2 contents of the glasses indicate that  相似文献   

13.
The average compositions (including H2O, Cl, F, and S contents) and chemical structure of oceanic mantle plumes were estimated on the basis of the ratios of incompatible volatile components, potassium, and some other elements in the basaltic magmas of ocean islands (melt inclusions and quenched glasses). The following average concentrations were estimated for the plume mantle: 510 ppm K2O, 520 ppm H2O, 21 ppm Cl, 55 ppm F, and 83 ppm S; these values are significantly higher than those of the depleted mantle (except for S). The abundances of H2O, Cl, and S are lower than in the primitive mantle. The normalized H2O content in the plume mantle is similar to the concentrations of similarly incompatible La and Ce but lower than the concentrations of K2O, Cl, and Sr. This is at odds with the idea of wet mantle plumes. Three types of basaltic magmas corresponding to three types of plume sources (M1, M2, and M3) were distinguished. The concentrations of incompatible elements in these reservoirs were estimated using two models, assuming either an isochemical mantle or a moderately enriched composition of plume material. The latter model gave the following average concentrations of H2O, Cl, F, and S: 130, 33, 11, and 110 ppm for M1, 110, 12, 65, and 45 ppm for M2; 530, 29, 49, and 110 ppm for M3. The plume mantle is not homogeneous, and its heterogeneity is related to the existence of three main compositions, one of which (M1) is similar to the mantle of mid-ocean ridges, and two others (M2 and M3) are moderately enriched in K2O, TiO2, P2O5, F, and incompatible trace elements. The compositions of M2 and M3 are strongly different in H2O, Cl, and S contents. The M2 mantle reservoir is significantly poorer in these components and richer in incompatible trace elements than M3. The plume mantle was formed mainly by the mixing of three sources: ultradepleted mantle, moderately enriched relatively dry mantle, and moderately enriched H2O-rich mantle. In addition to the three main components of the plume mantle, there are probably minor components enriched in chlorine and depleted in fluorine. It is supposed that all these components are entrained into the plume mantle through the mantle recycling of components of the oceanic and continental crust. The established relationships are in agreement with the zonal model of a mantle plume, which includes a hot central part poor in H2O, Cl, and S; an outer part enriched in volatile and nonvolatile incompatible elements; and enclosing mantle material interacting with the plume.  相似文献   

14.
Based on the generalization of data on melt inclusions and quenched glasses, the average compositions of subduction (island arc and active continental margin settings) basic magmas were estimated. The main geochemical features of the average composition of these magmas are significant depletion in Nb and Ta, less significant depletion in Ti, Zr, and Sm, and enrichment in Cl, H2O, F, and P in the primitive mantlenormalized patterns. The average normalized contents of moderately incompatible HREE in these magmas are close to those in the basic magmas of other geodynamic settings. Subduction basic magmas exhibit negative correlation of Li, Y, Dy, Er, Yb, Lu, and Ti contents with MgO content. Most of incompatible elements (Nb, Ta, U, Th, LREE) do not correlate with MgO, but correlate with each other and K2O. Variations in element contents are related to crystallization differentiation, magma mixing, and possibly, participation of several sources. The water content in the island arc basic magmas varies from almost zero value to more than 6 wt %. Most compositions are characterized by weak negative correlation between H2O and MgO contents, but some compositions define a negative correlation close to that in magmas of mid-ocean ridges (MOR). Considered magmas demonstrate distinct positive correlation between MgO content and homogenization temperature, practically coinciding with that of MOR magmas. Modeling of phase equilibria revealed widening of crystallization field of olivine in the magmas of subduction zones compared to MOR magmas. This can be related to the high water content in subduction magmas. Simultaneous liquidus crystallization of olivine and clinopyroxene in subduction magmas occurs at pressure approximately 5 kbar higher than that of MOR magmas. Based on the average ratios of trace element to K2O content, we determined the average compositions for subduction magma sources. Relative to depleted mantle, they are enriched in all incompatible elements, with positive anomalies of U, Rb, Ba, B, Pb, Cl, H2O, F, and S, and negative anomalies of Th, K, Be, Nb, Ta, Li, Nd, Pb, and Ti. A general elevated content of incompatible elements indicates a reworking of the rocks of mantle wedge by fluids and melts that were released from the upper layers of subducted plate.  相似文献   

15.
High temperature mass spectrometric analyses of glasses from quenched pillow rims of andesites dredged from 1170 m water depth in the northern portion of the Mariana Island arc indicate substantially less H2O (~ 1 wt.%) and more CO2 (~ 0.24 wt.%) than previously reported for volcanic arc rocks. Glass-vapor inclusions within plagioclase phenocrysts from quenched rims have CO2H2O ratios of 1:1. These results are similar to analyses of basaltic samples from the Mariana Trough (a back-arc basin). Generally, F and Cl contents are higher and S lower in the arc rocks compared to the samples from the back-arc basin. These results favor models for the production of island arc magmas which involve melting of the subducted slab, rather than just melting of the overlying mantle wedge because of the high volatile content needed to produce island arc magmas from peridotite (10–15 wt.%). The trough samples, although similar in non-volatile composition to mid-ocean ridge rocks, have much higher H2O. somewhat higher CO2 and lower S contents. Either near surface addition of voiatiles has enriched the magmas or H2O must be a more important component in the generation and evolution of back-arc basin lavas than in the genesis of mid-ocean ridge basalts.  相似文献   

16.
Numerical models on thermal structure, convective flow of solid, generation and transportation of H2O-rich fluid in subduction zones are consolidated to have a comprehensive view of the subduction zone processes: heat balance, circulation of H2O magmatism–metamorphism, growth of arcs and continental margins. A large scale convection model with steady subduction of a cold old slab (130 Myr old) predicts rapid ( 100 Myr) cooling of subduction zones, resulting in cessation of magmatism. The model also predicts that the mantle temperature beneath arcs and continental margins is greatly affected by the effective temperature of the subducting slab, i.e., the age of the subducting slab. If subduction of a young hot slab, including ridge subduction, occurs every 60 to 120 Myr as is suggested for eastern Asia, the average temperature beneath arcs is increased by about 300 °C, which may explain the long-lasting magmatism in eastern Asia. Associated with subduction of young slabs and ridges, thermal structure and circulation of H2O are greatly modified to cause a transition from (1) normal arc magmatism, (2) forearc mantle melting, to (3) slab melting to produce a significant amount (100 km3) of granitic melts, associated with both high-P/T and low-P/T type metamorphism. The last stage of (3) can result in formation of a granitic batholith belt and a paired metamorphic belts. Synthesis of the numerical models and observations suggest that episodic subduction of young slabs and ridges can explain heat source for generating a large amount of granitic magmas of batholiths, synchronous formation of batholith and regional metamorphic belts, and PT conditions of the paired metamorphism. Even the high-P/T metamorphism requires an elevated geothermal structure in the forearc region, associated with ridge subduction. Although the emplacement of the batholiths and the regional metamorphic belts, and the mass balance in subduction zones are not well constrained at present, the episodic event associated with ridge subduction is thought to be essential for net growth of arcs and continental margins, as well as for the long-term heat balance in subduction zones.  相似文献   

17.
Chlorine-35 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were collected at 14.1 and 18.8 Tesla fields to determine the atomic scale structural environments of the chloride ions in anhydrous and hydrous silicate and aluminosilicate glasses containing 0.2 to 0.7 wt% Cl. NMR peaks are broad and featureless, but are much narrower than the total chemical shift range for the nuclide in inorganic chlorides. Peak widths are primarily due to quadrupole interactions and to a lesser extent to chemical shift distributions. Peak positions are quite different for the Na- and Ca-containing glasses, suggesting that most Cl coordination environments contain network modifier cations. Comparison of peak positions and shapes for silicate and aluminosilicate glasses containing either Na or Ca suggests that there is no obvious contribution from Cl bonded to Al, and relative quantitation of peak areas indicates that there is no systematic undercounting of 35Cl spins in the aluminous vs. the Al-free samples. In Ca-Na silicate glasses with varying Ca/(Ca + Na), the mixed-cation glasses have intermediate chemical shifts between those of the end members, implying that there is not a strong preference of either Ca2+ or of Na+ around Cl. Hydrous Na-aluminosilicate glasses with H2O contents up to 5.9 wt% show a shift to higher frequency NMR signal with increasing H2O content, while the quadrupole coupling constant (CQ) remains constant at ∼3.3 MHz. However, the change in frequency is much smaller than that expected if H2O systematically replaced Na+ in the first-neighbor coordination shell around Cl. A series of hydrous Ca-aluminosilicate glasses with H2O contents up to 5.5 wt% show no shift in NMR signal with increasing H2O content. The CQ remains constant at ∼4.4 MHz, again suggesting no direct interaction between Cl and H2O in these samples.  相似文献   

18.
Glasses from Mauna Loa pillow basalts, recent subaerial vents, and inclusions in olivine were analyzed for S, Cl, F, and major elements by electron microprobe. Select submarine glasses were also analyzed for H2O and CO2 by infrared spectroscopy. The compositional variation of these tholeiitic glasses is dominantly controlled by crystal fractionation and they indicate quenching temperatures of 1,115-1,196 °C. Submarine rift zone glasses have higher volatile abundances (except F) than nearly all other submarine and subaerial glasses with the maximum concentrations increasing with water depth. The overwhelming dominance of degassed glasses on the submarine flanks of Mauna Loa implies that much of volcano's recent submarine growth involved subaerially erupted lava that reached great water depths (up to 3.1 km) via lava tubes. Anomalously high F and Cl in some submarine glasses and glass inclusions indicate contamination possibly by fumarolic deposits in ephemeral rift zone magma chambers. The relatively high CO2 but variable H2O/K2O and S/K2O in some submarine rift zone glasses indicates pre-eruptive mixing between degassed and undegassed magma within Mauna Loa's rift system. Volatile compositions for Mauna Loa magmas are similar to other active Hawaiian volcanoes in S and F, but are less Cl-rich than Ll'ihi glasses. However, Cl/K2O ratios are similar. Mauna Loa and Ll'ihi magmas have comparable, but lower H2O than those from Kilauea. Thus, Kilauea's source may be more H2O-rich. The dissimilar volatile distribution in glasses from active Hawaiian volcanoes is inconsistent with predictions for a simple, concentrically zoned plume model.  相似文献   

19.
Bulk-rock chlorine content and isotopic composition (δ37Cl) were determined in oceanic serpentinites, high-pressure metaperidotites and metasediments in order to gain constraints on the global chlorine cycle associated with hydrothermal alteration and subduction of oceanic lithosphere. The distribution of insoluble chlorine in oceanic serpentinites was also investigated by electron microprobe. The hydrothermally-altered ultramafic samples were dredged along the South West Indian Ridge and the Mid-Atlantic Ridge. The high-pressure metamorphic samples were collected in the Western Alps: metaperidotites in the Erro-Tobbio unit and metasediments in the Schistes Lustrés nappe.Oceanic serpentinites show relatively large variations of bulk-rock Cl contents and δ37Cl values with mean values of 1105 ± 596 ppm and −0.7 ± 0.4‰, respectively (n = 8; 1σ). Serpentines formed after olivine (meshes) show lower Cl content than those formed after orthopyroxene (bastites). In bastites of two different samples, Cl is positively correlated with Al2O3 and negatively correlated with SiO2. These relationships are interpreted as reflecting preferential Cl-incorporation into the bastite structure distorted by Al (substituted for Si) rather than different alteration conditions between olivine and orthopyroxene minerals. High-pressure metaperidotites display relatively homogeneous Cl contents and δ37Cl values with mean values of 467 ± 88 ppm and −1.4 ± 0.1‰, respectively (n = 7; 1σ). A macroscopic high-pressure olivine-bearing vein, formed from partial devolatilization of serpentinites at ∼2.5 GPa and 500-600 °C, shows a Cl content and a δ37Cl value of 603 ppm and −1.6‰, respectively. Metasediments (n = 2) show low whole-rock Cl contents (<15 ppm Cl) that did not allow Cl isotope analyses to be obtained.The range of negative δ37Cl values observed in oceanic serpentinites is likely to result from water-rock interaction with fluids that have negative δ37Cl values. The homogeneity of δ37Cl values from the high-pressure olivine-bearing vein and the metaperidotite samples implies that progressive loss of Cl inherited from oceanic alteration throughout subduction did not significantly fractionate Cl isotopes. Chlorine recycled in subduction zones via metaperidotites should thus show a range of δ37Cl values similar to the range found in oceanic serpentinized peridotites.  相似文献   

20.
The present study illustrates the interest of using the elastic recoil detection analysis (ERDA) method to characterize any geological sample matrix with respect to hydrogen. ERDA is combined with Rutherford back scattering (RBS) and particle induced X-ray emission (PIXE), allowing the simultaneous characterization of the matrix with respect to major and trace elements (Z > 15). Analyses are performed by mapping of a 4 × 16 μm2 incident beam of 4He+ on large areas (50 × 200 μm2). The method is almost not destructive and requires no calibration with respect to well known hydrous samples. Hydrous and nominally anhydrous phases in contact with each other in the same sample may both be characterized. The depth of the analyses is limited to several μm beneath the surface, allowing tiny samples to be investigated, provided their sizes are larger than the incident beam. Our setup has been improved in order to allow H determination on a micrometric scale with a 5-15% relative uncertainty and a detection limit of 94 wt ppm H2O. We present multi-elemental mappings on a large panel of samples: (1) natural and analogue synthetic glasses from Stromboli volcano (0.44-4.59 wt% H2O), natural rhyolitic glasses (1466-1616 wt ppm H2O); (2) magmatic rhyolitic melt inclusions from Guadeloupe Island (4.37-5.47 wt% H2O) and their quartz host crystal (2020 ± 230 wt ppm H2O); (3) nominally anhydrous natural (82-260 wt ppm H2O) and experimentally hydrated (240-790 wt ppm H2O) olivines; natural clinopyroxenes (159-716 wt ppm H2O); natural orthopyroxenes (201-452 wt ppm H2O); a natural garnet (90 wt ppm H2O). Results show that ERDA is a strong and accurate reference method that can be used to characterize geological sample from various matrix compositions from high to low water contents. It can be used to calibrate other methods of microanalysis such as Fourier Transform Infrared Spectroscopy (FTIR) or secondary ion mass spectrometry (SIMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号