首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

2.
《International Geology Review》2012,54(11):1377-1394
The Guerrero terrane is composed of Middle Jurassic–Lower Cretaceous arc assemblages that were rifted from the North American continental mainland during Late Jurassic–Early Cretaceous back-arc spreading within the Arperos Basin, and subsequently accreted back to the continental margin in the late Aptian. The Sierra de los Cuarzos area is located just 50 km east of the Guerrero terrane suture belt and, therefore, its stratigraphic record should be highly sensitive to first-order tectonic changes. Two Upper Jurassic–Lower Cretaceous clastic units were recognized in the Sierra de los Cuarzos area. The Sierra de los Cuarzos Formation is the lowermost exposed stratigraphic unit. Petrographic data and U-Pb zircon ages suggest that the Sierra de los Cuarzos Formation was derived from quartz-rich sedimentary and igneous sources within the North American continental mainland. The Sierra de los Cuarzos Formation is overlain by the Pelones Formation, which is composed of volcanoclastic sandstones derived from a mix of sources that include the mafic arc assemblages of the Guerrero terrane and quartz-rich sedimentary and volcanic rocks exposed in the continental mainland. The provenance change documented in the Sierra de los Cuarzos area suggests that the Pelones Formation was deposited when the Arperos Basin was closed and the Guerrero terrane was colliding with the North American continental mainland. Based on these data, we interpret the Pelones Formation as the syn-tectonic stratigraphic record associated with the accretion of the Guerrero terrane.  相似文献   

3.
Detrital zircon U–Pb data from sedimentary rocks in the Hengyang and Mayang basins, SE China reveal a change in basin provenance during or after Early Cretaceous. The results imply a provenance of the sediment from the North China Craton and Dabie Orogen for the Upper Triassic to Middle Jurassic sandstones and from the Indosinian granitic plutons in the South China Craton for the Lower Cretaceous sandstones. The 90–120 Ma age group in the Upper Cretaceous sandstones in the Hengyang Basin is correlated with Cretaceous volcanism along the southeastern margin of South China, suggesting a coastal mountain belt have existed during the Late Cretaceous. The sediment provenance of the basins and topographic evolution revealed by the geochronological data in this study are consistent with a Mesozoic tectonic setting from Early Mesozoic intra-continental compression through late Mesozoic Pacific Plate subduction in SE China.  相似文献   

4.
闽北地区中侏罗世火山岩的发现及其地质意义   总被引:3,自引:2,他引:1  
中侏罗世火山岩在东南沿海分布极少,但对区域中生代构造-岩浆活动过程及大地构造演化的研究具有重要意义。在闽北地区大面积白垩纪火山岩区调查中,在政和铁山地区发现中侏罗世火山岩,用LA-ICP-MS同位素测试技术测得的锆石U-Pb年龄为173.63±0.80Ma。火山岩属钙碱性系列流纹质熔结凝灰岩,显示过铝质、富钾、富集大离子亲石元素,亏损高场强元素等地球化学特征,推断其形成于陆缘弧环境,与古太平洋板块早期俯冲作用有关。  相似文献   

5.
The collision between the North and South China cratons in Middle Triassic time (240–225 Ma) created the world’s largest belt of ultrahigh-pressure (UHP) metamorphism. U–Pb ages, Hf isotope systematics and trace element compositions of zircons from the Xugou, Yangkou and Hujialing peridotites in the Sulu UHP terrane mainly record a ~470 Ma tectonothermal event, coeval with the Early Paleozoic kimberlite eruptions within the North China craton. This event is interpreted as the result of metasomatism by fluids/melts derived from multiple sources including a subducting continental slab. The peridotites also contain zircons with ages of ~3.1 Ga, and Hf isotope data imply a component ≥3.2 Ga old. Most zircon Hf depleted mantle model ages are ~1.3 Ga, suggesting that the deep subcontinental lithospheric mantle beneath the southeastern margin of the North China craton experienced a intense mid-Mesoproterozoic metasomatism by asthenospheric components, similar to the case for the eastern part of this craton. Integrating data from peridotites along the southern margin of the craton, we argue that the deep lithosphere of the cratonic margin (≥3.2 Ga old), from which the Xugou, Yangkou and Hujialing peridotites were derived, experienced Proterozoic metasomatic modification, followed by a strong Early Paleozoic (~470 Ma) tectonothermal event and the Early Mesozoic (~230 Ma) collision and northward subduction of the Yangtze craton. The Phanerozoic decratonization of the eastern North China craton, especially along its southern margin, was not earlier than the Triassic continental collision. This work also demonstrates that although zircons are rare in peridotitic rocks, they can be used to unravel the history of specific lithospheric domains and thus contribute to our understanding of the evolution of continental cratons and their margins.  相似文献   

6.
The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts.The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction–accretion, paired metamorphism, arc volcanism, back-arc spreading and arc–arc collision. The major accretionary complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous–Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1–2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc–arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc–arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.  相似文献   

7.
Age-dating of detrital zircons from 22 samples collected along, and adjacent to, the Yarlung-Tsangpo suture zone, southern Tibet provides distinctive age-spectra that characterize important tectonostratigraphic units. Comparisons with data from Nepal, northern India and the Lhasa and Qiangtang terranes of central Tibet constrain possible sources of sediment, and the history of tectonic interactions.Sedimentary rocks in the Cretaceous–Paleogene Xigaze terrane exhibit strong Mesozoic detrital zircon peaks (120 and 170 Ma) together with considerable older inheritance in conglomeratic units. This forearc basin succession developed in association with a continental volcanic arc hinterland in response to Neotethyan subduction under the southern edge of the Eurasia. Conspicuous sediment/source hinterland mismatches suggest that plate convergence along this continental margin was oblique during the Late Cretaceous. The forearc region may have been translated > 500 km dextrally from an original location nearer to Myanmar.Tethyan Himalayan sediments on the other side of the Yarlung-Tsangpo suture zone reveal similar older inheritance and although Cretaceous sediments formed 1000s of km and across at least one plate boundary from those in the Xigaze terrane they too contain an appreciable mid-Early Cretaceous (123 Ma) component. In this case it is attributed to volcanism associated with Gondwana breakup.Sedimentary overlap assemblages reveal interactions between colliding terranes. Paleocene Liuqu conglomerates contain a cryptic record of Late Jurassic and Cretaceous rock units that appear to have foundered during a Paleocene collision event prior the main India–Asia collision. Detrital zircons as young as 37 Ma from the upper Oligocene post-collisional Gangrinboche conglomerates indicate that subduction-related convergent margin magmatism continued through until at least Middle and probably Late Eocene along the southern margin of Eurasia (Lhasa terrane).Although the ages of detrital zircons in some units appear compatible with more than one potential source with care other geological relationships can be used to further constrain some linkages and eliminate others. The results document various ocean closure and collision events and when combined with other geological information this new dataset permits a more refined understanding of the time–space evolution of the Cenozoic India–Asia collision system.  相似文献   

8.
The Qinling Orogen separating the North China plate from the Yangtze plate is a key area for understanding the timing and process of aggregation between the two plates. Two competing and highly contrasting tectonic models currently exist to explain the timing and nature of collision; one advocates a Devonian continental collision while the other favors a Triassic collision. The Wuguan Complex, between the early Paleozoic North Qinling and the Mesozoic South Qinling terranes, can provide important constraints on the late Paleozoic evolutionary processes of the Qinling Orogen. Metamorphosed sedimentary rock of the Wuguan Complex have a detrital zircon age spectrum with two major peaks at 453 Ma and 800 Ma, several minor age populations of 350–430 Ma and 1000–2868 Ma, and a youngest weighted mean age of 358 ± 3 Ma, indicating a mixed source from the North Qinling terrane. The recrystallized zircons yield a weighted mean age of 333 ± 2 Ma, representing the metamorphic age. Geochemical analyses imply that the sedimentary rocks were originally deposited in an active continental margin dominated by an acidic-arc source with a subordinate mafic-ultramafic source. The youngest population of detrital zircons (358 Ma) suggests that the Wuguan Complex developed as forearc basin along the southern accreted margin of the North Qinling terrane during the early Carboniferous, whereas the ca. 520–460 Ma mafic rocks with E-MORB, N-MORB, OIB or island arc basalt signatures probably derived from the Danfeng Group. In combination with regional data, we suggest that the depositional age of the Wuguan Complex is ca. 389–330 Ma, but it was subsequently incorporated into tectonic mélange by the northward subduction of the Paleo-Qinling Ocean. A long-lived southward-facing subduction-accretionary system in front of the North Qinling terrane probably lasted until at least the early Carboniferous.  相似文献   

9.
华夏陆块早古生代沉积记录对于了解华南陆块在Gondwana超大陆演化过程中所起的作用具有重要意义。本文对广东省中山市神湾地区下寒武统八村群开展了锆石年代学和元素地球化学研究。结果表明,八村群变泥质粉砂岩的碎屑锆石年龄可分为4034~3122 Ma、2765~2250 Ma、1765~1443 Ma、1126~901 Ma、884~773 Ma以及595~547 Ma六组,其中最年轻的一组碎屑锆石加权平均年龄将该地层的最大沉积时间限定在551±4 Ma。锆石的Hf同位素特征则指示八村群沉积物源可能以古老地壳物质再循环为主,伴少量初生地壳物质。八村群变粉砂岩和变泥岩样品的化学风化指数(CIA)和成分成熟度(ICV)分别为79. 8~86. 4和0. 39~0. 87,均表明源区经历了相对强烈的化学风化作用。元素地球化学结果显示,八村群样品强烈富集不相容元素,而亏损Ni、Cr和Co等,指示八村群源区可能以活动大陆边缘构造背景下的长英质岩石为主。综合对比八村群与世界其他陆块同时期沉积地层的碎屑锆石年龄组成,本文认为八村群代表了新元古代晚期至早古生代早期Gondwana超大陆聚合过程中造山作用的沉积响应,支持华夏陆块位于Gondwana超大陆北缘,靠近北印度板块和羌塘地体,是该超大陆的重要组成部分。  相似文献   

10.
张里  吴耀 《岩石学报》2012,28(5):1674-1688
本文对拉萨地体东南部林芝地区分布的变质岩进行了岩相学和锆石年代学研究。结果表明,林芝杂岩中的变质沉积岩主要由片麻岩和片岩组成,它们经历了中压角闪岩相变质作用。变质岩中的锆石多由继承的碎屑岩浆核和新生的变质边组成。继承锆石核给出了新太古代至晚古生代的年龄范围,其主要年龄峰值在~1560Ma、~1190Ma、~620Ma和~340Ma,而锆石变质边给出了53Ma和27Ma的变质年龄。这一结果表明,林芝杂岩中的变质沉积岩很可能形成在古生代,其物质源区具有Grenville和Pan-Africa期造山作用的构造热事件记录。这一研究和已有的成果进一步证明,拉萨地体起源于Gondwana大陆北缘,在新生代印度与欧亚大陆的碰撞/俯冲过程中,拉萨地体作为俯冲带的上盘经历了多期变质作用改造。本研究为拉萨地体起源与多期构造演化提供了重要信息。  相似文献   

11.
越南东北部早中生代构造事件的年代学约束   总被引:6,自引:3,他引:3  
越南东北部-海南岛-粤西南构造带整体上呈NW-SE走向展布于华南板块的南缘,是理解华南构造演化的关键地区.作为印支运动代表性地区的越南东北部地区Song Chay构造带上,下古生界浅变质沉积岩、上古生界至早-中三叠世未变质的沉积盖层中都发育向北东逆冲推覆,韧性变形域表现为NE-SW向的矿物拉伸线理和上部指NE的剪切变形,而脆性变形域则记录了大量NE极性的褶皱和冲断构造.两广交界的云开地体和海南岛地区存在着相同样式的构造变形.关于这期变形的时间,本文通过对野外地层以及所出露不同时期岩体变形特征的综合研究,并结合高质量的锆石U-Pb年代学数据,在越南的东北部厘定为237 ~ 228Ma.这期广泛分布于华南板块南缘构造事件的动力学机制同Day Nui Con Voi(大象山)微陆块与华南板块在早中生代的构造拼合事件相关.本文认为华南板块在早三叠世开始沿着越南东北部的Song Chay缝合带俯冲拼合于Day Nui Con Voi微陆块之下,因此在早-中三叠世时期,在作为俯冲盘的华南板块南缘发育一系列的褶皱和逆冲推覆构造,晚三叠世印支造山作用结束.因此,华南板块南缘的越南东北部-海南岛-粤西南构造带被一同卷入早-中三叠世同印支板块的碰撞造山体系之中.  相似文献   

12.
《Gondwana Research》2014,25(3):1272-1286
The Mejillonia terrane, named after the Mejillones Peninsula (northern Chile), has been traditionally considered an early Paleozoic block of metamorphic and igneous rocks displaced along the northern Andean margin in the Mesozoic. However, U–Pb SHRIMP zircon dating of metasedimentary and igneous rocks shows that the sedimentary protoliths were Triassic, and that metamorphism and magmatism took place in the Late Triassic (Norian). Field evidence combined with zircon dating (detrital and metamorphic) further suggests that the sedimentary protoliths were buried, deformed (foliated and folded) and metamorphosed very rapidly, probably within few million years, at ca. 210 Ma. The metasedimentary wedge was then uplifted and intruded by a late arc-related tonalite body (Morro Mejillones) at 208 ± 2 Ma, only a short time after the peak of metamorphism. The Mejillones metamorphic and igneous basement represents an accretionary wedge or marginal basin that underwent contractional deformation and metamorphism at the end of a Late Permian to Late Triassic anorogenic episode that is well known in Chile and Argentina. Renewal of subduction along the pre-Andean continental margin in the Late Triassic and the development of new subduction-related magmatism are probably represented by the Early Jurassic Bólfin–Punta Tetas magmatic arc in the southern part of the peninsula, for which an age of 184 ± 1 Ma was determined. We suggest retaining the classification of Mejillonia as a tectonostratigraphic terrane, albeit in this new context.  相似文献   

13.
新的区域地质调查在海南岛东北部木栏头地区识别出一套从前未知的中级变质杂岩。木栏头变质杂岩主要沿林新—木栏头—虎威岭—赤坡—七星岭—新埠海—铺前海边沿岸呈基岩或不同尺度的无根岩块断续出露,其主体是钙硅酸盐岩和正、副片麻岩,含有少量斜长角闪岩、石英岩和大理岩,并按分布区域可进一步区分出林新片麻岩- 斜长角闪岩组合、木栏头变质火山岩- 钙硅酸盐岩组合、虎威岭- 七星岭片麻岩- 钙硅酸盐岩- 大理岩组合和新埠海- 铺前片麻岩组合等四套岩石组合。对30件变质基性岩、变质中酸性岩、变质碎屑沉积岩、钙硅酸盐岩以及花岗和伟晶岩脉等不同类型岩石的锆石U- Pb定年结果表明,木栏头变质杂岩的原岩主体是一套二叠纪火山- 沉积岩系,其内含有少量二叠纪花岗质侵入岩以及前寒武纪结晶基底的残留。前寒武纪结晶基底主要包括古元古代晚期(1670 Ma)碎屑沉积岩和中元古代早期(1460~1410 Ma)花岗质片麻岩,晚二叠世碱性花岗岩中还存在大量单一的中元古代晚期(1180 Ma)继承锆石。变质沉积岩中的早期碎屑锆石年龄峰值为2550~2490 Ma、1850~1780 Ma、1600~1560 Ma、1450 Ma和1100 Ma,表明其物源主要来自于海南岛中部的抱板群、石碌群和石灰顶组。二叠纪花岗岩的侵入时代主要为280 Ma和260 Ma,与陆缘弧前盆地环境下形成的火山- 沉积岩系的时代基本一致。这些沉积岩中的碎屑锆石除具有395~345 Ma和280~256 Ma两个年龄峰值外,部分样品还含有960~930 Ma和450~410 Ma两个重要年龄峰值,与前人在海南岛晚古生代地层中获得的年代学结果相似。木栏头变质杂岩经历了晚二叠世—中三叠世(254~235 Ma)高角闪岩相区域变质和深熔作用以及花岗和伟晶岩脉的大规模侵入,独居石U- Pb定年表明中侏罗世(159 Ma)花岗岩脉也侵入其中。结合近年发表的研究资料,我们认为海南岛应属于印支陆块的一部分,由中元古代结晶基底和早古生代盖层构成的琼南地体以及该地体演化而来的琼北构造混杂岩带两个次级构造单元组成,邦溪- 晨星构造带或昌江- 琼海断裂不能被视为华南和印支陆块间的构造边界,真正的古特提斯缝合带(即金沙江- 哀牢山- 马江缝合带的东延)应位于木栏头北部,大致相当于现今琼州海峡断裂的位置。华南和印支陆块间古特提斯洋盆的关闭始于石炭纪(340~300 Ma)洋壳的南向俯冲,形成北部的潮滩鼻榴辉岩和南部的邦溪- 晨星弧后盆地,二叠纪时期(280~255 Ma)洋盆持续俯冲形成海南岛主体大陆岛弧以及木栏头弧前盆地,而后洋盆最终关闭并进入到陆- 陆碰撞和碰撞后伸展阶段,从而形成木栏头变质杂岩以及海南岛内部其他三叠纪变质岩和同期花岗质岩石。  相似文献   

14.
位于大别山东南麓的安庆-潜山地区中新生代碎屑岩比较发育,主元素分析表明,砂岩主要为杂砂岩,其次是岩屑砂岩和长石砂岩。根据主元素、微量元素和稀土元素特征值分析结果,中、上三叠统和下、中侏罗统的源岩来源广泛,属于大陆岛弧、活动大陆边缘和被动大陆边缘构造背景,可能反映了前陆盆地物源的二元特征。古近系源岩主要为活动大陆边缘和大陆岛弧构造环境,说明物源仅来自大别山造山带。稀土元素比值及相关系数分析揭示,中晚三叠世黄马青群的源岩主要为宿松群的长英质片岩、浅粒岩以及大别杂岩,侏罗纪磨山组大致类似于大别群的花岗片麻岩,罗岭组与大别群比较类似。显示大别山造山带在中晚三叠世已经隆升并遭受剥露。  相似文献   

15.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

16.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

17.
The Mongol–Okhotsk Belt, a major structural element of East Asia, is probably the youngest orogenic segment within the Central Asian Orogenic Belt. However, the timing of final closure of the Mongol–Okhotsk Ocean remains unresolved. Here, we present detrital zircon U–Pb–Hf isotopic data and whole-rock geochemical data (major and trace elements and Sm-Nd isotopes) for the metasedimentary rocks from the Un'ya–Bom Terrane, Dzhagdy Terrane, and the eastern part of the Tukuringra Terrane. Our new zircon U-Pb ages suggest that all sedimentary formations along the Dzhagdy Transect are early Mesozoic in age, rather than Paleozoic as previously thought. The detrital zircons from the metasedimentary rocks in the Un'ya–Bom Terrane, the Dzhagdy Terrane, and the eastern part of the Tukuringra Terrane yielded the youngest concordant ages of 194 ± 4, 193 ± 2, and 171 ± 2 Ma, respectively. Moreover, we note that the so-called sedimentary formations of these terranes are not single sedimentary sequences as previously suggested, but a set of an olistostrome or tectonic mélanges composed of rocks of different ages and origins. These sedimentary formations are probably relics of the Mongol–Okhotsk remnant basin that formed in the “gaps” between the southern margin of the North Asian Craton and the Amur Block during their collision. The absence of detrital zircons younger than 171 Ma in the sedimentary rocks of the Mongol–Okhotsk basin implies that the final closure of this basin could have taken place at the boundary of the Early and Middle Jurassic as a result of the collision or the development of the Mongol–Okhotsk orogenic belt in this region. After that, the Mongol–Okhotsk Belt underwent intense deformation related to within-plate strike-slip faulting, which could be attributed to the late Mesozoic rotation of the North Asian Craton relative to the continental massifs of East Asia.  相似文献   

18.
对大兴安岭北部漠河盆地中侏罗统漠河组砂岩进行了碎屑锆石LA-ICP-MS U-Pb年龄测试,获得的碎屑锆石U-Pb年龄为1425~170 Ma,反映了中侏罗时期漠河盆地源区的复杂性。该时期漠河盆地物源主要有:中元古代变质火山岩,碎屑锆石年龄1425~1064 Ma;新元古代变质侵入岩,碎屑锆石年龄888~550 Ma;寒武—奥陶纪变质表壳岩与深成侵入岩,碎屑锆石年龄517~441 Ma;石炭—二叠纪侵入岩,碎屑锆石年龄327~252 Ma;三叠纪—中侏罗世侵入岩,碎屑锆石年龄250~170 Ma。这一测试数据与盆地现在南缘分布的地质体的时代基本对应,说明盆地的物源主要来自南部的中元古代—中侏罗世地质体,碎屑锆石中最小年龄为170 Ma,反映漠河组沉积下限不早于中侏罗世早期。这一成果对研究漠河盆地源区的物质组成、盆地沉积年代和油气成藏条件提供了新的素材。  相似文献   

19.
为了通过碎屑岩的物源对比讨论古亚洲洋的闭合过程,笔者选择西拉木伦河北侧林西双井子地区和南侧奈曼旗下石碑地区的志留纪地层进行碎屑岩锆石U-Pb年代学研究。北侧样品LX0831-11为粉砂质板岩,采于西拉木伦河北岸上志留统杏树洼组。碎屑锆石年龄分为三组:385~531Ma(N=52)、872~1097Ma(N=11)、1344~1901Ma(N=11),碎屑锆石的最小年龄限定地层沉积下限为中-晚泥盆世。南侧样品130417-06为石英岩屑砂岩,采于奈曼旗下石碑组顶部砂岩中。碎屑锆石年龄分为四组:370~523Ma(N=34)、884~1481Ma(N=21)、1573~1900Ma(N=6)、2369~2588Ma(N=8),碎屑锆石的最小年龄限定地层沉积下限为晚泥盆世。这两个分别来自西拉木伦河南、北两侧原志留纪样品,显示一致的志留-泥盆纪及晚元古代碎屑锆石年龄谱,表明两者从泥盆纪开始即具有相同的沉积物源;而代表兴蒙造山带的元古代碎屑锆石在奈曼旗地区的出现,说明泥盆纪以来兴蒙造山带的剥蚀物已到达华北板块北缘。因此,本次碎屑锆石年代学研究暗示华北板块与其北部松辽地块在中-晚泥盆世之前已经完成拼合过程,即此时两者间已不存在古亚洲洋。  相似文献   

20.
This paper reports LA–ICP–MS U–Pb dates and in situ Hf isotope analyses of detrital zircons from the Mesozoic basins in western Shandong, China, with the aim to constrain the depositional ages and provenances of the Mesozoic strata as well as the Mesozoic tectonic evolution of the eastern North China Block (NCB). The Mesozoic strata in western Shandong, from bottom to top, include the Fenghuangshan, Fangzi, Santai and Wennan formations. Most of the analyzed zircon grains exhibit oscillatory growth zoning and have relatively high Th/U ratios (generally 0.2–3.4), suggesting a magmatic origin. Zircons from the Fenghuangshan Formation in the Zhoucun Basin yield six main age populations (2489, 1854, 331, 305, 282, and 247 Ma). Zircons from the Fangzi Formation in the Zhoucun and Mengyin basins yield eight main age populations (2494, 1844, 927, 465, 323, 273, 223, and 159 Ma) and ten main age populations (2498, 1847, 932, 808, 540, 431, 315, 282, 227, and 175 Ma), respectively, whereas zircons from the Santai Formation in the Zhoucun and Mengyin basins yield nine main age populations (2519, 1845, 433, 325, 271, 237, 192, 161, and 146 Ma) and six main age populations (2464, 1845, 853, 277, 191, and 150 Ma), respectively. Five main age populations (2558, 1330, 609, 181, and 136 Ma) are detected for zircons from the Wennan Formation in the Pingyi Basin. Based on the youngest age, together with the contact relationships among formations, we propose that the Fenghuangshan Formation formed in the Early–Middle Triassic, the Fangzi Formation in the Middle–Late Jurassic, the Santai Formation after the Late Jurassic, and the Wennan Formation after the Early Cretaceous. These results, together with previously published data, indicate that: (1) the sediments of the Fenghuangshan Formation were sourced from the Precambrian basement and from late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB; (2) the sediments of the Fangzi and Santai formations were sourced from the Precambrian basement, late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB, and the Sulu terrane, as well as from Middle–Late Jurassic igneous rocks in the southeastern part of the NCB; and (3) the Wennan Formation was sourced from the Tongshi intrusive complex, the Sulu terrane, and minor Precambrian basement and Early Cretaceous igneous rocks. The evolution of detrital provenance indicates that in the Early–Middle Triassic, the northern part of the NCB was higher than its interior; during the Late Triassic to Early Jurassic, the eastern NCB was uplifted, resulting in a period of non-deposition; and an important transition from a compressional to an extensional tectonic regime occurred during the Middle–Late Jurassic. The presence of Neoproterozoic and Triassic detrital zircons in the Fangzi Formation sourced from the Sulu terrane suggests that large-scale sinistral strike-slip movement along the Tan-Lu Fault Zone did not occur after the Middle Jurassic (ca. 175 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号