首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Cooley andTukey's fast Fourier transform algorithm for two dimensional complex data has been modified so as to reduce the storage space and computation time to half. The modified version has enabled us to Fourier transform aeromagnetic field over twice the area that could be covered by the original method. From the Fourier transform we computed radial spectrum, which could be approximated by three straight line segments whose slopes are related to the depths of the various magnetic layers. The computed depths are: 1090', 2600', and 7200'.  相似文献   

2.
The Fourier transform formula for a two-dimensional fault truncating a horizontal bed at an arbitrary angle of inclination is derived. The amplitude spectrum of the Fourier transform is found to give information about the depth to the top of the upper part of the faulted bed and the inclination of the fault-plane. Under suitable conditions the thickness and the displacement of the bed involved can be obtained. With actual field data, these transforms can be obtained at discrete points by a Fourier analysis of the gravity anomaly. A field example from the Logan fault area near Montreal, Que., Canada, is given.  相似文献   

3.
A fast algorithm is presented for numerical evaluation of forward and inverse Radon transforms. The algorithm does not perform exact one-to-one mapping as the discrete Fourier transform but, due to the use of band-limited basis functions, it is robust and sufficiently accurate for seismic applications. By rewriting the transform as a convolution, a computational speed is obtained similar to the speed of the 2D fast Fourier transform.  相似文献   

4.
The hyperbolic Radon transform has a long history of applications in seismic data processing because of its ability to focus/sparsify the data in the transform domain. Recently, deconvolutive Radon transform has also been proposed with an improved time resolution which provides improved processing results. The basis functions of the (deconvolutive) Radon transform, however, are time-variant, making the classical Fourier based algorithms ineffective to carry out the required computations. A direct implementation of the associated summations in the time–space domain is also computationally expensive, thus limiting the application of the transform on large data sets. In this paper, we present a new method for fast computation of the hyperbolic (deconvolutive) Radon transform. The method is based on the recently proposed generalized Fourier slice theorem which establishes an analytic expression between the Fourier transforms associated with the data and Radon plane. This allows very fast computations of the forward and inverse transforms simply using fast Fourier transform and interpolation procedures. These canonical transforms are used within an efficient iterative method for sparse solution of (deconvolutive) Radon transform. Numerical examples from synthetic and field seismic data confirm high performance of the proposed fast algorithm for filling in the large gaps in seismic data, separating primaries from multiple reflections, and performing high-quality stretch-free stacking.  相似文献   

5.
借助Walsh变换实现引力位球谐函数的快速Fourier变换导出了球谐函数的Walsh-Fourier变换、转换矩阵的快速Walsh-Hadamard变换算法及其数据压缩方法还讨论了Walsh-Fouriede换的特性及其在球谐分析中的应用研究表明:当序率和频率等同时.Walsh.Fourier变换和Fourier变换的结果完全一致,两者曲线形态相同;按双精度运算,两种方法的计算准确度均可达到±(10-15-10-14);Walsh-Fourler变换可以用实数变换取代Fourier变换的复数变换;快速Walsh-Hadamard变换速度提高的幅度将随着阶数的增加而递增:Walsh-Fourier变换可以用于序率和频率等同或不等同的情形Walsh-Fourler变换可在计算精度、数据压缩和位场谱表示方面好于Fourier变换  相似文献   

6.
The spectrum of a magnetic or a gravity anomaly due to a body of a given shape with either homogeneous magnetization or uniform density distribution can be expressed as a product of the Fourier transforms of the source geometry and the Green's function. The transform of the source geometry for any irregularly-shaped body can be accurately determined by representing the body as closely as possible by a number of prismatic bodies. The Green's function is not dependent upon the source geometry. So the analytical expression for its transform remains the same for all causative bodies. It is, therefore, not difficult to obtain the spectrum of an anomaly by multiplying the transform of the source geometry by that of the Green's function. Then the inverse of this spectrum, which yields the anomaly in the space domain, is calculated by using the Fast Fourier Transform algorithm. Many examples show the reliability and accuracy of the method for calculating potential field anomalies.  相似文献   

7.
The Karhunen-Loève (K–L) transform is an effective technique for suppressing spatially uncorrelated noise, but because of its high computational cost, fast transforms, such as the Fourier transform, have been more favoured. Two techniques that combine to make the K–L transform feasible for seismic data processing are discussed. The first technique filters the data for limited dips. For each dip, linear moveout is applied to the seismic sections so that events with this dip are made flat. By interpolation, we can include dips that are fractions of a sample/trace. After linear moveout, zero-lag K–L filtering is applied followed, by inverse linear moveout; the results from all dips are added to form the final filtered data. The second technique is blocking, in which the seismic section is divided into blocks small enough for each block to be processed using relatively small matrices; the processed blocks are assembled to form the final filtered section. Using a combination of these techniques, seismic sections can be filtered at a reasonable cost using the K-L transform.  相似文献   

8.
近年来,利用最大熵功率谱法计算磁性体深度受到了地球物理界的重视。本文利用该方法求取东北地学断面磁性层顶、底界面深度,并结合航磁ΔTa异常图及相应滤波图,判定了该断面几条主干断裂的位置与展布,其结果有的与地质推断基本一致,有的则有较大差异。  相似文献   

9.
The Radon transform is applied to airborne geophysical data, which consist of parallel profiles, analogous to a seismic record. The plane-wave decomposition (PWD) thus becomes the strike-direction decomposition (SDD) since the observed spatially distributed information is represented by its strike directions in a domain achieved by the transformation. It is important that, after the SDD, we can identify anomalies and work on them according to their strikes. In particular, for gridding purposes, we may guide the second interpolation of the bi-directional gridding approach along the strike directions. In principle, the proposed Radon transform gridding method (RTGM) transforms the observed parallel profiles into a domain where information is mapped as its strike-direction ‘traces’ against its wavelengths. The number of strike directions into which the data are decomposed is equal to the number of lines to be interpolated. The Fourier spectrum of the grid is reconstructed from the strike-wavenumber domain by using the projection-slice theorem and the final square grid is obtained by performing an inverse Fourier transformation on the spectrum. The SDD is restricted to the Nyquist wavenumber bandwidth imposed by the survey line-spacing, so that there is no addition of ambiguous short wavelengths in the gridded data. A tapering window is employed to prevent any Gibb's oscillation in the final grid because of the sharp Nyquist cut-off in the reconstructed spectrum due to the survey line-spacing. The RTGM is first tested on a set of synthetic line-based data. It is also applied to aeromagnetic profile data from northern Botswana as a practical example.  相似文献   

10.
This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region 1 current to the region 2 current.  相似文献   

11.
提出直接在序率域内用Walsh变换实现引力场球谐综合的问题。给出球谐函数展开式的Walsh变换及快速算法,讨论了Walsh变换和Walsh-Fourier变换、Fourier变换之间的差异,分析了用地球重力场模型OSU81的位系数作出的Walsh变换和Fourier变换的结果。研究表明:Walsh变换与Walsh-Fourier变换、Fourier变换对应向量在数量方面的差值通常都小于士10~(-5);对于给定的阶数和飞行高度,3种方法求得的球谐综合值总是完全一致的;1°×1°等网格数据和Walsh函数形状相近。在重力场研究中Walsh级数会比Fourier级数收敛得更快;Walsh变换在计算速度、计算准确度、数据储存、收敛速度和方法简单方面都好于Fourier变换。  相似文献   

12.
A numerical technique to compute the resistivity transform directly from the observed Wenner sounding data has been developed. In principle, the procedure is based on a decomposition method and consists of two steps: the first step determines a function that approximates the apparent resistivity data and the second step transforms this function into the corresponding kernel by an analytical operation. The proposed method is tested on some theoretical master curves. A high degree of precision is achieved with very little computer time. The applicability is shown on two field examples.  相似文献   

13.
Summary An optical processor has been used to filter ground and aeromagnetic or gravimetric maps in order to obtain information on magnetic or causative bodies buried in the ground. This is accomplished by directional filtering in the Fourier spectrum of the magnetic or gravimetric intensity as displayed on a contour map. Despite certain difficulties inherent to the use of contour maps instead of density maps, some promising results were obtained.The great advantage of this optical filtering technique resides in the fact that no digitization (which is a lengthy and expensive process) is required for the analysis. The optical processor used may carry out the Fourier transform of over ten million points almost instantaneously, and at a very low unit cost, because the required optical system is much cheaper and much faster than a digital system.  相似文献   

14.
Chebyshev expansions are used to solve the 3D forward gravity problem. Since the matrix factorization method is used to solve the coefficient equation system and the fast Fourier transform (FFT) technique is used to compute the forward and backward Chebyshev expansions, this method is very fast. Multipole expansions are used to calculate approximate boundary conditions (BCs) for realistic problems. When the length of any source-body dimension is less than 70% of the minimum dimension of the computational domain, the relative error caused by the approximate BCs is about 1%. A cell-average discretization method is suggested. The accuracy obtained by the cell-average discretization is much better than that obtained by the traditional point-injection discretization. The Chebyshev expansion technique was applied to four density models including a complex geological structure consisting of two normally faulted layers. Models which were finely sampled had a maximum relative error of about 1%.  相似文献   

15.
The formal equivalency between a Hankel transform and an Abel transform followed by a Fourier transform is used as a basis for the computation of synthetic seismograms and for performing plane-wave decomposition of both synthetic and field seismograms. The Abel-Fourier method performs better for near-offset or small ray-parameter, although at greater computational effort than calculations based upon the asymptotic Hankel transform.  相似文献   

16.
基于FFT-MA谱模拟的快速随机反演方法研究   总被引:3,自引:2,他引:1       下载免费PDF全文
虽然基于地质统计学的随机反演方法能够有效融合测井资料中的高频信息,但计算效率低,占用内存大,限制了它在实际资料中的应用.本文在保留传统随机反演方法优点的基础上,创造性地引入傅里叶滑动平均(Fast Fourier Transform-Moving Average,FFT-MA)谱模拟进行频率域的地质统计模拟,并利用逐步变形算法(Gradual Deformation Method,GDM)确保模拟结果与实际地震数据的匹配,构建了基于FFT-MA谱模拟的新的快速随机反演方法.与常规随机反演相比,新方法不仅分辨率高,而且能够使反演解得到快速收敛,有效提高计算效率,减少内存占用.模型试算获得了与理论模型吻合度较好的高分辨率反演结果.实际资料分析也表明新方法所得到的高分辨率反演结果能够对薄互储层进行良好的展示,为薄储层的识别提供高效可靠的技术支持.  相似文献   

17.
The Fourier transform of a square-shaped section of a magnetic survey, digitized in a square grid, forms a rectangular matrix of coefficients which can be condensed to a series of average amplitudes dependent only on their frequency and no longer on the direction of the respective partial waves. These average amplitudes together represent a spectrum which–when plotted in a semilogarithmic coordinate system (log amplitude versus frequency)–often shows straight segments which decrease with increasing frequency. By continuing the given field downwards these straight segments become horizontal at a certain depth, the so-called “white depth”. This white depth may be used as a first estimate for the depth of magnetic sources producing the respective part of the field. It is shown that the sources which correspond to such use of the white depth can be expected to be “randomly distributed with some positive autocorrelation”. As an example for such a depth estimation the interpretation of the aeromagnetic survey of NW-Germany by a relief in 8–16 km depth is given. The relief divides the subsurface in an upper nonmagnetic layer and a lower layer with magnetization M= 2 Am?1.  相似文献   

18.
退化的Fourier偏移算子及其在复杂断块成像中的应用   总被引:11,自引:4,他引:7       下载免费PDF全文
波动方程宽角抛物逼近得到的通常是非常系数的单程波传播算子,其系数是速度横向变化的函数,因此需要利用有限差分(FD)进行数值实施. 通过对Lippmann Schwinger单程波动积分方程的退化核逼近,本文研究了一类宽角退化算子的偏移成像. 这种退化偏移算子只用快速Fourier变换进行波场延拓,将常规的Fourier分裂步地震偏移方法(SSF)推广适应强速度横向变化介质和大角度传播波场. 退化的Fourier偏移算子通过在两个分裂步项之间作波数域线性插值来实现波场延拓,每延拓一层需要比常规的SSF地震偏移方法多一次快速Fourier变换(FFT). 通过SEG/EAGE盐丘模型和实际地震资料的应用表明,退化Fourier偏移算子能很好地对盐下的陡倾角断层和实际地震剖面上的复杂小断块和大断裂地质构造成像.  相似文献   

19.
Summary A simple method is presented for computing the gravity and magnetic profiles across two-dimensional bodies of arbitrary shape. The computer programme makes use of expressions for the attraction caused by an infinitely long sheet and it takes only a few seconds to compute a profile both for gravity and magnetic anomalies and their vertical and horizontal derivatives. Accuracy of the method is shown to be as good as that of graticules and owing to the use of simpler formulae, the method appears to be faster than the method of polygons.  相似文献   

20.
A method based on the discrete wavelet transform was applied to the regional-residual separation of potential fields and to the filtering of local anomalies. A specific space-scale wavelet analysis, called multiresolution analysis, allowed decomposition of the signal with respect to a vast range of scales. Different analysing wavelets were applied to anomalies in both synthetic and real cases, but the more appropriate basis needed to be chosen by requiring the maximum compactness for the multiresolution analysis. Moreover, since such analysis was found not to be shift-invariant, the same criterion was applied to choosing the best signal shift. Application of the technique to both synthetic and real cases produced an optimal space-scale representation of the fields and a consistent regional-residual separation. Furthermore, the space localization allowed a variety of filtered signals to be obtained, each one with a specific scale and local area content. Fourier and wavelet analyses were both applied to the filtering out of the intense Etna anomaly from the aeromagnetic field of Sicily. The wavelet method was more powerful, suppressing only the Etna volcano anomaly and leaving the rest of the map practically unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号