首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of wildfire on peak streamflow and annual water yield has been investigated empirically in numerous studies. The effect of wildfire on baseflow recession rates, in contrast, is not well documented. The objective of this paper was to quantify the effect of wildfire on baseflow recession rates in California for both individual watersheds and for all the study watersheds collectively. Two additional variables, antecedent groundwater storage and potential evapotranspiration, were also investigated for their effect on baseflow recession rates and postfire baseflow recession rate response. Differences between prefire and postfire baseflow recession rates were modeled statistically in 8 watersheds using a mixed statistical model that accounted for fixed and random effects. For the all‐watershed model, antecedent groundwater storage, potential evapotranspiration, and wildfire were each found to be significant controls on baseflow recession rates. Wildfire decreased baseflow recession rates 52.5% (37.6% to 66.0%), implying that postfire reductions in above‐ground vegetation (e.g., decreased interception, decreased evapotranspiration) were a stronger control on baseflow recession rate change than hydrophobicity. At an individual watershed scale, baseflow recession rate response to wildfire was found to be sensitive to intraannual differences in antecedent groundwater storage in 2 watersheds, with the effect of wildfire on baseflow recession rates being greater with lower levels of antecedent groundwater storage. Examination of burn severity for a subset of the study watersheds pointed to riparian zone burn severity as a potential primary control on postfire recession rate change. This study demonstrates that wildfire may have a substantial impact on fluxes to and from groundwater storages, altering the rate at which baseflow recedes.  相似文献   

2.
Quantifying ground water recharge at multiple scales using PRMS and GIS   总被引:9,自引:1,他引:8  
Cherkauer DS 《Ground water》2004,42(1):97-110
Management of ground water resources requires a method to calculate demonstrably accurate recharge rates at local to regional scales using readily available information bases. Many methods are available to calculate recharge, but most are unable to satisfy all these conditions. A distributed parameter model is shown to meet the stated needs. Such models are input intensive, however, so a procedure to define most inputs from GIS and hydrogeological sources is presented. It simplifies the PRMS calibration observed streamflow hydrographs by reducing degrees of freedom from dozens to four. For seven watersheds (60 to 500 km2), the GIS-aided calibrations have average errors of 5% on recharge and 2% on total streamflow, verifying the accuracy of the process. Recharge is also calculated for 63 local-scale subwatersheds (average size 37 km2). For the study area, calculated recharges average 11 cm/yr. Soil and rock conductivity, porosity, and depth to the water table are shown to be the physical properties which dominate the spatial variability of recharge. The model has been extended to uncalibrated watersheds where GIS and climatic information are known. It reproduces total annual discharge and recharge to within 9% and 10%, respectively, indicating the process can also be used to calculate recharge in ungauged watersheds. It has not been tested outside the study area, however.  相似文献   

3.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   

4.
Artificial subsurface (tile) drainage is used to increase trafficability and crop yield in much of the Midwest due to soils with naturally poor drainage. Tile drainage has been researched extensively at the field scale, but knowledge gaps remain on how tile drainage influences the streamflow response at the watershed scale. The purpose of this study is to analyse the effect of tile drainage on the streamflow response for 59 Ohio watersheds with varying percentages of tile drainage and explore patterns between the Western Lake Erie Bloom Severity Index to streamflow response in heavily tile-drained watersheds. Daily streamflow was downloaded from 2010 to 2019 and used to calculated mean annual peak daily runoff, mean annual runoff ratio, the percent of observations in which daily runoff exceeded mean annual runoff (TQmean), baseflow versus stormflow percentages, and the streamflow recession constant. Heavily-drained watersheds (>40% of watershed area) consistently reported flashier streamflow behaviour compared to watersheds with low percentages of tile drainage (<15% of watershed area) as indicated by significantly lower baseflow percentages, TQmean, and streamflow recession constants. The mean baseflow percent for watersheds with high percentages of tile drainage was 20.9% compared to 40.3% for watersheds with low percentages of tile drainage. These results are in contrast to similar research regionally indicating greater baseflow proportions and less flashy hydrographs (higher TQmean) for heavily-drained watersheds. Stormflow runoff metrics in heavily-drained watersheds were significantly positively correlated to western Lake Erie algal bloom severity. Given the recent trend in more frequent large rain events and warmer temperatures in the Midwest, increased harmful algal bloom severity will continue to be an ecological and economic problem for the region if management efforts are not addressed at the source. Management practices that reduce the streamflow response time to storm events, such as buffer strips, wetland restoration, or drainage water management, are likely to improve the aquatic health conditions of downstream communities by limiting the transport of nutrients following storm events.  相似文献   

5.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.  相似文献   

6.
ABSTRACT

Estimating groundwater recharge is crucial to ensuring the proper management of aquifers. In this study, net regional recharge and spatial potential recharge are estimated at four watersheds within the Charlevoix–Haute-Côte-Nord (CHCN) regions, Quebec Province, Canada. Four methods are applied based on available data. The first two approaches are regional water budget methods. These two methods differ in their estimation of vertical inflow (VI), which is estimated from two hydrological models: GR4J and HYDROTEL. The third method estimates potential recharge spatially over the study area. Finally, the streamflow data are analysed using the Eckhardt baseflow separation method to obtain an estimation of recharge, assuming that discharge is equal to recharge. According to the results of all investigated methods, the mean annual recharge for the CHCN region is approximately 183 mm, which is 18% of the total annual precipitation (P). The discussion section highlights uncertainties due to the assumptions of each method and the reliability of the data.  相似文献   

7.
Heejun Chang 《水文研究》2007,21(2):211-222
This study investigates changes in streamflow characteristics for urbanizing watersheds in the Portland Metropolitan Area of Oregon for the period from 1951 to 2000. The objective of this study was to assess how mean annual runoff ratio, mean seasonal runoff ratio, annual peak runoff ratio, changes in streamflow in response to storm amount, the fraction of time that the daily mean flow exceeds the annual mean flow, 3‐day recession constants, and dry/wet flow ratio vary among watersheds with different degrees of urban development. There were no statistically significant changes in annual runoff ratio and annual peak runoff ratio for the mixed land‐use watershed (Tualatin River watershed) and the urban watershed (Johnson Creek watershed) during the entire study period. The Tualatin River watershed, where most of the urban development occurred in a lower part of the watershed, showed a statistically significant increase in annual peak runoff ratio during the 1976 and 2000 period. The Upper Tualatin River watershed illustrated a significant decrease in annual peak runoff ratio for the entire study period. With significant differences in seasonal runoff ratio, only Johnson Creek exhibited a significant increase in both wet and dry season runoff ratios. Streamflow during storm events declined rapidly in the urban watershed, with a high 3‐day recession constant. At an event storm scale, streamflow in Fanno Creek, which is the most urbanized watershed, responded quickly to precipitation input. The fraction of time that the daily mean flow exceeded the annual mean flow and dry/wet flow ratio are all lower in Johnson Creek. This suggests a shorter duration of storm runoff and lower baseflow in the urbanized watershed when compared to the mixed land use watershed. The findings of this study demonstrate the importance of spatial and temporal scale, climate variability, and basin physiographic characteristics in detecting the hydrologic effects of urbanization in the Pacific Northwest of the USA. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A method for estimation of mean baseflow residence time in watersheds from hydrograph runoff recession characteristics was developed. Runoff recession characteristics were computed for the period 1993–96 in the 2 km2 Winnisook watershed, Catskill Mountains, southeastern New York, and were used to derive mean values of subsurface hydraulic conductivity and the storage coefficient. These values were then used to estimate the mean baseflow residence time from an expression of the soil contact time, based on watershed soil and topographic characteristics. For comparison, mean baseflow residence times were calculated for the same period of time through the traditional convolution integral approach, which relates rainfall δ18O to δ18O values in streamflow. Our computed mean baseflow residence time was 9 months by both methods. These results indicate that baseflow residence time can be calculated accurately using recession analysis, and the method is less expensive than using environmental and/or artificial tracers. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

9.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A study of the interaction between groundwater and surface water was undertaken within a small agricultural watershed in southern Ontario, Canada. Groundwater contributions to streamflow were measured along a section of stream during baseflow conditions and during rainfall events. Four techniques were used to estimate the contribution of groundwater to the stream along a 450 m reach (three during baseflow and one during stormflow conditions). Under baseflow conditions, streamflow measurements using the velocity–area technique indicated that the net groundwater flux to the stream during the summer months was 10 ml s−1 m−1. Hydrometric measurements (i.e. hydraulic gradient and hydraulic conductivity) taken using mini-piezometers installed in the sediments beneath the stream resulted in net groundwater flux estimates that were four to five times lower. Seepage meters failed to provide any measurements of water flux into or out of the stream. Therefore, based on these results, the velocity–area technique gives the best estimate of groundwater discharge. Hydrograph separations were conducted using isotopic ratios and electrical conductivity on two large rainfall events with different antecedent moisture conditions in the catchment. Both events showed that pre-event water (generally considered groundwater) dominated streamflow and tile drain flow with 64%–80% of the total discharge contributed by pre-event water. High water table conditions within the catchment resulted in greater stream discharge and a greater contribution of event water in the streamflow than that observed under low water table conditions for similar intensity storm events. The results also showed that differences in riparian zone width, vegetation and surface saturation conditions between the upper and lower catchment can influence the relative magnitude of streamflow response from the two catchment areas.  相似文献   

12.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Bruno Ambroise 《水文研究》2016,30(20):3560-3577
In the small Ringelbach research catchment, where studies on the water cycle components in a granitic mountainous environment have been conducted since 1976, the water‐saturated areas that are hydraulically connected to the outlet play a major role in the streamflow generation, as it is here that complex interactions between atmosphere, surface and ground waters take place. During baseflow recession periods, which may last several months between two groundwater recharge events, the atmospheric inputs of water and energy on these contributing areas only explain the streamflow fluctuations observed around the master recession curve, which defines the groundwater contribution: fluctuating above it in the case of precipitation input on these areas, below it in the case of evaporation output from these areas. Streamflow may therefore largely deviate from the master recession curve in the case of long, hot, dry spells. Detailed mapping has shown that their variable extent is well related to baseflow by a loglinear curve. On the other hand, a synthetic master recession curve, well fitted by a second‐order hyperbolic function, has been obtained from numerous pure recession periods. Both based on these two curves, a simple procedure and a simple model have been used to (i) validate the hypothesis that the connected saturated areas are the only permanent variable contributing areas and (ii) simulate the daily streamflow volumes over long baseflow recession periods by a water balance of the aquifer below these areas only. The storm runoff ratio for small to moderate rainfall events is indeed corresponding to the catchment saturated fraction at that time. The volume of daily streamflow oscillations is indeed corresponding to the evaporation at the potential rate from the saturated areas only. In both cases, streamflow naturally tends towards the master recession curve after the end of any atmospheric perturbation. Introducing these findings into TOPMODEL led to significantly improved simulation results during baseflow recession periods. The master recession curve may therefore be considered as a dynamic equilibrium curve. Together with the relationship between saturated extent and baseflow, it provides the main characteristics necessary to understand and model the interactions at this complex interface and the resulting daily streamflow variations during baseflow recession periods in this type of catchment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The paired watershed experimental (PWE) approach has long been used as an effective means to assess the impacts of forest change on hydrology in small watersheds (<100 km2). Yet, the effects of climate variability on streamflow are not often assessed in PWE design. In this study, two sets of paired watersheds, (1) Camp and Greata Creeks and (2) 240 and 241 Creeks located in the Southern Interior of British Columbia, Canada, were selected to explore relative roles of forest disturbance and climate variability on streamflow components (i.e., baseflow and surface runoff) at different time scales. Our analyses showed that forest disturbance is positively related to annual streamflow components. However, this relationship is statistically insignificant since forest disturbance can either increase or decrease seasonal streamflow components, which eventually limited the positive effect on streamflow at the annual scale. Interestingly, we found that forest disturbance consistently decreased summer streamflow components in the two PWEs as forest disturbance can augment earlier and quicker snow-melt processes and hence reduce soil moisture to maintain summer streamflow components. More importantly, this study revealed that climate variability played a more significant role than forest disturbance in both annual and seasonal streamflow components, for instance, climate variability can account for as much as 90% of summer streamflow components variation in Camp, suggesting the role of climate variability on streamflow should be highlighted in the traditional PWE approach to truly advance our understanding of the interactions of forest change, climate variability and water for sustainable water resource management.  相似文献   

15.
In this study, we characterize the snowmelt hydrological response of nine headwater watersheds in southeast Wyoming by separating streamflow into three components using a combination of tracer and graphical approaches. First, continuous 15-min records of specific conductance (SC) from 2016 to 2018 were used to separate streamflow into annual contributions, representing water that contributes to streamflow in a given year that entered the watershed in the same year being considered, and perennial contributions, representing water that contributes to streamflow in a given year that entered the watershed in previous years. Then, diurnal streamflow cycles occurring during the snowmelt season were used to graphically separate annual contributions into rapid diurnal snowmelt contributions, representing water with the relatively fastest hydrological response and shortest residence time, and delayed annual contributions, representing water with relatively longer residence time in the watershed before becoming streamflow. On average, mean annual total streamflow was comprised of between 22% and 46% perennial contributions, 7% and 14% rapid diurnal snowmelt contributions, and 46% and 55% delayed annual contributions across the watersheds. A hysteresis index describing SC-discharge patterns indicated that, annually, most watersheds showed negative, concave, anti-clockwise hysteretic direction suggesting faster flow pathways dominate streamflow on the rising limb of the annual hydrograph relative to the falling limb. At the daily timescale during snowmelt-induced diurnal streamflow cycles, hysteresis was negative, but with a clockwise direction, implying that rapid diurnal snowmelt contributions generated from the concurrent daily snowmelt, with lower SC, arrived after delayed annual contribution peaks and preferentially contributed on the falling limb of diurnal cycles. South-facing watersheds were more susceptible to early season snowmelt at slower rates, resulting in less annual and more perennial contributions. Conversely, north-facing watersheds had longer snow persistence and larger proportions of annual contributions and rapid diurnal snowmelt contributions. Watersheds with surficial geology dominated by glacial deposits had a lower proportion of rapid diurnal snowmelt contributions compared to watersheds with large percentages of bedrock surficial geology.  相似文献   

16.
《水文科学杂志》2013,58(6):1165-1175
Abstract

Steep topography and land-use transformations in Himalayan watersheds have a major impact on hydrological characteristics and flow regimes, and greatly affect the perenniality and sustainability of water resources in the region. To identify the appropriate conservation measures in a watershed properly, and, in particular, to augment flow during lean periods, accurate estimation of streamflow is essential. Due to the complexity of rainfall—runoff relationships in hilly watersheds and non-availability of reliable data, process-based models have limited applicability. In this study, data-driven models, based upon the Multiple Adaptive Regression Splines (MARS) technique, were employed to predict streamflow (surface runoff, baseflow and total runoff) in three mid-Himalayan micro-watersheds. In addition, the effect of length of historical records on the performance of MARS models was critically evaluated. Though acceptable MARS models could be developed with a 2-year data set, their performance improved considerably with a 3-year data set. Various indicators of model performance, such as correlation coefficient, average deviation, average absolute deviation and modelling efficiency, showed significant improvement for simulation of surface runoff, baseflow and total flow. To further analyse the versatility and general applicability of the MARS approach, 2-year data sets were used to develop the model and test it on a third-year data set to assess its performance. The models simulated the surface runoff, baseflow and total flow reasonably well and can be reliably applied in ungauged small watersheds under identical agro-climatic settings.  相似文献   

17.
Flow from artificial subsurface (tile) drainage systems may be contributing to increasing baseflow in Midwestern rivers and increased losses of nitrate‐nitrogen. Standard hydrograph analysis techniques were applied to model simulation output and field monitoring from tile‐drained landscapes to explore how flow from drainage tiles affects stream baseflow and streamflow recession characteristics. DRAINMOD was used to simulate hydrologic response from drained (24 m tile spacing) and undrained agricultural systems. Hydrograph analysis was conducted using programs PART and RECESS. Field monitoring data were obtained from several monitoring sites in Iowa typical of heavily drained and less‐drained regions. Results indicate that flow from tile drainage primarily affects the baseflow portion of a hydrograph, increasing annual baseflow in streams with seasonal increases primarily occurring in the late spring and early summer months. Master recession curves from tile‐drained watersheds appear to be more linear than less‐tiled watersheds although comparative results of the recession index k were inconsistent. Considering the magnitude of non‐point source pollutant loads coming from tile‐drained landscapes, it is critical that more in‐depth research and analysis be done to assess the effects of tile drainage on watershed hydrology if water quality solutions are to be properly evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Complexity in simulating the hydrological response in large watersheds over long times has prompted a significant need for procedures for automatic calibration. Such a procedure is implemented in the basin‐scale hydrological model (BSHM), a physically based distributed parameter watershed model. BSHM simulates the most important basin‐scale hydrological processes, such as overland flow, groundwater flow and stream–aquifer interaction in watersheds. Here, the emphasis is on estimating the groundwater parameters with water levels in wells and groundwater baseflows selected as the calibration targets. The best set of parameters is selected from within plausible ranges of parameters by adjusting the values of hydraulic conductivity, storativity, groundwater recharge and stream bed permeability. The baseflow is determined from stream flow hydrographs by using an empirical scheme validated using a chemical approach to hydrograph separation. Field studies determined that the specific conductance for components of the composite hydrograph were sufficiently unique to make the chemical approach feasible. The method was applied to the Big Darby Creek Watershed, Ohio. The parameter set selected for the groundwater system provides a good fit with the estimated baseflow and observed water well data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Low streamflow statistic estimators at ungauged river sites generally have large errors and uncertainties. This can be due to many reasons, including lack of data, complex hydrologic processes, and the inadequate or improper characterization of watershed hydrogeology. One potential solution is to take a small number of streamflow measurements at an ungauged site to either estimate hydrogeologic indices or transfer information from a nearby site using concurrent streamflow measurements. An analysis of four low streamflow estimation techniques, regional regression, regional plus hydrogeologic indices, baseflow correlation, and scaling, was performed within the Apalachicola–Chattahoochee–Flint watershed, a U.S. Geological Survey WaterSMART region in the south‐eastern United States. The latter three methods employ a nominal number of spot measurements at the ungauged site to improve low streamflow estimation. Results indicate that baseflow correlation and scaling methods, which transfer information from a donor site, can produce improved low streamflow estimators when spot measurements are available. Estimation of hydrogeologic indices from spot measurements improves regional regression models, with the baseflow recession constant having more explanatory power than the aquifer time constant, but these models are generally outperformed by baseflow correlation and scaling.  相似文献   

20.
A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole‐watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11‐km2 watershed contains 73 infiltration‐focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号