首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the effects of acoustic-gravity waves with long and short periods on the solar profile of the K i7699 line using a dynamic model of line formation.First we studied the kinetic equilibrium of the K i atoms in a static atmosphere confirming, with up-to-date atomic data and atmospheric model, that a good fit of the resonance line 7699 is possible only when non-LTE effects are accounted for.Then the static non-LTE line source function and lower-level population are used as input data for calculating the line formation in the presence of waves.The time behaviour of the synthetic profiles corresponding to 300 s and 30 s waves is extensively discussed. The characteristic redshift induced by the 30 s wave is explained within the framework of the S-S line formation model. Long-period waves yield an anticorrelation between the asymmetry at different residual intensities and the line core shift, as observed. The short-period waves with velocity amplitude of about 100 m s–1 (at the base of the photosphere) produce a mean bisector whose lower part has a slope in agreement with the observed one. The efficiency of waves to produce macro and microturbulence is also discussed.Currently NAS/NRC Senior Research Associate at Sacramento Peak Obs., New Mexico, U.S.A.  相似文献   

2.
Mean line bisector positions were found for the neutral iron line at 5250.2 using disk-integrated sunlight. After correction for the apparent time variation of the instrumental profile, it was found that the mean bisector position was constant during the period from May 1982 to February 1983.The correlation between the total magnetic flux as measured at Mount Wilson and the line asymmetry results of Livingston is not high. In particular, the magnetic flux dropped in 1982, suggesting a large line asymmetry that was not observed. However, the correlation between the 30-day average of the mean magnetic field and Livingston's results is quite high (-0.95), suggesting that the asymmetry of the disk-integrated line profile is related to the old plage regions rather than to the active regions.Now at the Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, U.S.A.  相似文献   

3.
Kozlova  L. M.  Somov  B. V. 《Solar System Research》2003,37(3):227-237
The behavior of the He I 10830 Å infrared triplet parameters in active and quiet solar regions was traced from 1976 until 2000. We analyze the correlation between the central depth of the main He I line component and other solar activity indices: the Wolf number, the radiation flux at a frequency of 2800 MHz, the mean number of flares in sunspot groups, and the mean solar magnetic field. We show that the strong correlation between the He I 10830 Å line depth and the phase of the 11-year solar cycle allows this depth to be effectively used as a new solar activity index both on long time scales (years) and on times scales of the order of a month or even days. The suggested new activity index is shown to have advantages over the universally accepted indices. The depth of the He I 10830 Å line in quiet regions was found to increase from the phase of minimum solar activity to the phase of maximum by a factor of about 2. In active regions, this increase is less than 30%. The differences between the cyclic variations of the chromospheric He I 10830 Å line radiation in active and quiet structures on the solar disk are indicative of the probable differences in the nature of cyclicity and its manifestations in magnetic fields of different spatial scales. The background magnetic fields appear to vary during the solar cycle more strongly than do the local fields associated with sunspots, faculae, and activity complexes. We suggest using regular observations in the He I 10830 Å line to predict solar activity.  相似文献   

4.
It is shown that comparing an observed Fraunhofer profile to a fitted gaussian yields more information on shape and asymmetry of the solar line than the simple bisector method.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

5.
We analyze spectral line profiles obtained from regions of the solar surface exhibiting either an upflow or a downflow on a spatial and temporal scale corresponding to the white-light granulation. The differences between their line bisectors are measured to quantify changes in the asymmetry of the profile resulting from granular motion. The observed bisector differences are compared with differences predicted using conflicting granular models. Models, in which the motion of large, long-lived granules decreases rapidly with increasing height in the photosphere, are compatible with the observed line profile asymmetries.NRC/NAS Resident Research Associate.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST 78-17292 with the National Science Foundation.Summer Research Assistant at Sacramento Peak Observatory 1979.  相似文献   

6.
M. L. Demidov 《Solar physics》1994,153(1-2):115-129
This paper examines the question of the influence of the 525.02 nm Fei line profile (slope of its wings) variations over the solar disk upon observations of large-scale magnetic fields (LSMF) made in this line. The study has shown that depending on the position on the disk (center-limb effect) and magnetic field parameters at the place of the observation, values of magnetic field strengths determined with proper account of the real line profile and in the usual way (by calibration using the line profile at the center of the solar disk only) can differ by 25% or more, which is of crucial importance. Observations at the Solar Telescope for Operative Predictions (STOP) of the Sayan Observatory have been used to accomplish this work.  相似文献   

7.
We have measured the line widths and nonthermal velocities in 12 solar regions using high resolution EUV data taken by Hinode/EIS. We find that there exists a positive correlation between the intensity and nonthermal velocity for the Fe XII emission line as well as some other lines. The correlation coefficients decrease from the disk center to the limb. However, the nonthermal velocities of a particular spectral line do not vary much in different regions, so they are considered isotropic. In particular, we find that for a coronal loop structure, the largest widths and nonthermal velocities occur at the footpoints, where outflows appear. Based on these observational results, we discuss several physical processes responsible for coronal heating.  相似文献   

8.
Previous studies have shown that the measured velocity field in solar prominences exhibits a slightly different behaviour depending on the observational conditions, on the investigation method, and possibly on the type of prominence. Observations of prominences seen at the limb reveal strong downward motions, whereas upflows are detected as Doppler shifts in filaments on the disk. In order to shed new light on this point, we have investigated the mass motions in a solar prominence by using a new method for calculating the geometric distortion between subsequent images. Flows perpendicular to the line of sight have been determined in several layers of the prominence-corona atmosphere, using extreme ultraviolet (EUV) lines formed at different temperature levels (T=104–106 K). We show that the motions mainly have a vertical direction, oriented both upwards and downwards. The velocity pattern can change rapidly during time intervals exceeding 10–15 min. We also find that the measured velocity field shows a similar pattern in all the studied lines.  相似文献   

9.
The characteristics of Doppler shifts in a quiet region of the Sun are compared between the Hα line and the Ca?ii infrared line at 854.2 nm. A small area of 16″×40″ was observed for about half an hour with the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) at Big Bear Solar Observatory. The observed area contains a network region and an internetwork region, and identified in the network region are fibrils and bright points. We infer Doppler velocity v m from each line profile at each individual point with the lambdameter method as a function of half wavelength separation Δλ. It is confirmed that the bisector of the spatially averaged Ca?ii line profile has an inverse C-shape with a significant peak redshift of +?1.8 km?s?1. In contrast, the bisector of the spatially averaged Hα line profile has a C-shape with a small peak blueshift of ??0.5 km?s?1. In both lines, the bisectors of bright network points are significantly redshifted not only at the line centers, but also at the wings. The Ca?ii Doppler shifts are found to be correlated with the Hα ones with the strongest correlation occurring in the internetwork region. Moreover, we find that here the Doppler shifts in the two lines are essentially in phase. We discuss the physical implications of our results in view of the formation of the Hα line and Ca?ii 854.2 nm line in the quiet region chromosphere.  相似文献   

10.
Imaging Spectroscopy of a Solar Filament Using a Tunable Hα Filter   总被引:1,自引:0,他引:1  
Observations using a narrow band Hα filter still remain one of the best ways to investigate the fine structures and internal dynamics of solar filaments. Hα observations, however, have been usually carried out with the peak response of the filter fixed at a single wavelength, usually at the centerline, in which the investigation is limited to the Hα morphology and its time evolution. In this paper, we demonstrate that the Hα spectroscopy that takes Hα images successively at several wavelengths is a useful tool in the study of solar filaments on the solar disk. Our observation of a filament was carried out on August 3, 2004 at Big Bear Solar Observatory using the 10-inch refractor. The Lyot Hα filter was successively tuned to five wavelengths: ?0.6, ?0.3, 0.0, +0.3, and +0.6 Å from the Hα line center. Each set of wavelength scan took 15 s. After several steps of data reduction, we have constructed a five-wavelength spectral profile of intensity contrast at every spatial point. The contrast profile at each spatial point inside the filament was reasonably well fit by the cloud model as far as the contrast is high enough, and allowed us to construct the maps of τ0, v, Δ λD and S in the filament. We also found that the line center method that is often used, always yields line-of-sight velocities that are systematically lower than the cloud model fit. Our result suggests that taking Hα images at several wavelengths using a tunable filter provides an effective way of deriving physically meaningful parameters of solar filaments. Particularly constructing the time sequence of v maps appears to be a useful tool for the study of internal dynamics, like counterstreaming, in filaments.  相似文献   

11.
Based on the digital spectra taken with double monochromators of high spectral resolution, we have constructed the profile of the Fe I λ532.4185-nm line in the spectrum of the solar disk center. Basic spectrophotometric characteristics of the line profile have been determined with a high accuracy. The fine structure of the line profile is studied in detail. The profile asymmetry parameters have been determined.  相似文献   

12.
The center-to-limb behaviour of the Ba ii 4554 resonance line is analyzed together with data from the extreme limb, flash intensities and profiles of other Ba ii lines. An empirical NLTE method is employed in which the observed profiles are compared with synthesized profiles based on a standard one-dimensional model atmosphere, with the line source function, the barium abundance, the collisional damping and the atmospheric turbulence as free parameters.The line profiles from the extreme limb furnish considerable constraints on the formation of Ba ii 4554. Its wings reverse into emission well inside the solar limb, a phenomenon which cannot be explained by any frequency-independent line source function. Accounting for effects of partially coherent scattering in the line source function is a necessary and adequate step to reproduce the observations both over the disk and near the limb. The form of the empirically derived frequency-dependent line source function is discussed.Results are given for various parameters (gf-values, solar barium abundance and isotope ratios, collisional damping, microturbulence and macroturbulence).The 4554 profile of disk center shows a depression in its blue wing resembling asymetries found in various stellar spectral lines.  相似文献   

13.
The so-called Goldberg or profile intercomparison method of determining Doppler widths from spectral line profiles was used to analyze a group of high quality solar profiles which were observed with the McMath solar telescope at the Kitt Peak National Observatory. The observations consisted of profiles of eight lines of calcium and chromium, made at either four or five positions on the solar disk.A depth dependence of solar microturbulence could not be derived by applying the Goldberg method to a single pair of lines at a single disk position. When the depth dependence was determined from line pairs at different disk positions, a depth dependent turbulence model was obtained. The final model was anisotropic with radial and tangential components increasing with depth in the atmosphere.Now at Teledyne Brown Engineering, Huntsville, Alabama.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
Wavelengths and bisector indices (a special measure for the asymmetry of a line near its bottom) are determined for 70 lines in each of 47 high-dispersion spectra. The spectra were obtained with the Fourier Transform Spectrograph connected to the McMath Telescope at Kitt Peak National Observatory; they all cover the same spectral range from 3200 to 4000 Å and concern either the full disk (19 disk spectra), or the disk center (9 center spectra), or two areas at sin = 0.85 on the west- and east-side of the disk (19 limb spectra). The main observing seasons were June 1986, June 1987, April and June/July 1988. The - relative - position of an individual line in one spectrum can be established with a precision of about 4 m s-1, the precision of one bisector index is 1–2 m s-1.Wavelengths and bisector indices show of course the typical characteristics which result from the familiar effects known as blueshift, limb effect and line asymmetry. However, concerning their variations in time, unexpected results are obtained:(1) Even in disk spectra the time-scales of the wavelength variations are often in the order of one hour or less. (2) For all 3 types of spectra (disk, center, limb) the variations depend not only on the known parameters such as line depth and - occasionally - excitation potential, but also - often even primarily - on wavelength. (3) In center spectra, the wavelength differences between strong and faint lines can vary by as much as 500 m s-1, in disk spectra short-time variations of wavelength differences can amount to more than 50 m s-1. (4) For most spectra there is not only a very pronounced and narrow correlation between line shift and line temperature (a special measure for the line depth), but also a significant correlation between line shift and variation of the bisector index.Clearly, the observed effects must be attributed to variations of the velocity fields in the upper photosphere/lower chromosphere (super-granulation cells, overshooting, oscillations), which either influence the line wavelengths directly via the Doppler-effect, or indirectly by changing the contrast between the blue-shifted granules and the red-shifted intergranular lanes. Because of the snapshot character of the observations, no reliable conclusions can be drawn on the actual time-dependency.  相似文献   

15.
In an earlier research the employment of a radiation transport model with angle-dependent partial frequency redistribution, self-absorption by interplanetary hydrogen, realistic solar HLyαemission profile, and a time dependent `hot' hydrogen model to analyze 5 interplanetary HLyα glow spectra obtained with theHubble–Space–Telescope–GHRS spectrometer, has not resulted in unequivocal determination of a set of thermodynamical parameters of the interstellar hydrogen The residual discrepancies between the model and the data concern the observations performed within an interval of 1 year close to the solar minimum from very similar lines of sight. In this paper we investigate by calculating interplanetary HLyα lines with the use of a one hydrogen distribution and several solar HLyα line profiles whether this residual may be caused by possible variations in time of the shape of the solar HLyα emission line profile which cause variable illuminations of the interplanetary gas. These variations of illuminations cause variations in Doppler shift of the resonant interplanetary HLyα line that can amount to ≃ 4 km s-1in the line peak. Consequently we conclude that without adequate knowledge of the solar HLyα emission line profile during spectral observations of the interplanetary hydrogen gas it is impossible to obtain an agreement between models and observations better than by this value. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We have investigated 15 time series of Ca II line spectrograms in quiet-Sun regions located at various distances from the disk center. Our goal is to reveal the center-to-limb variation of the brightness oscillations. The residual intensities at the centers of the Ca II K and 849.806-nm lines and the K index have been analyzed. We have considered separately two components of the chromospheric network. Our main result is that the power of the brightness oscillations in the chromosphere of the average quiet Sun decreases to the limb. This change for the boundaries of supergranulation cells (networks) is considerably larger than that for their inner parts (cells). It is mainly determined by the 5-min oscillations; the 3-min oscillations show virtually no center-to-limb variation. In addition to studying the dependence of the oscillation power on the heliocentric angle, we also consider other characteristics of the oscillatory regime of the chromosphere. For example, the low-frequency oscillations with periods longer than 700 s, which are inherent predominantly in the K line core in networks, have been separated into an isolated mode. No center-to-limb variation has been revealed for them. As a result of our discussion of the patterns found based on present-day publications on the chromosphere dynamics, we conclude that different mechanisms and sources of its heating can simultaneously make their contributions.  相似文献   

17.
In order to establish some regularities or variations in the distribution of widths and intensities of the coronal line profiles λ 5303 and λ 6374 depending upon the solar activity, a statistical analysis was made for more than 3000 profiles (the data covering the period 1966–1972). The following results obtained:
  1. The distribution of coronal line profile widths changes depending upon the solar activity phase.
  2. The character of the relation between the intensities and widths varies with variation of the solar activity phase.
  相似文献   

18.
Additional observations of He ii (304 Å) and Si xi (303 Å) were obtained from a high resolution rocket spectrograph flown on 30 August, 1973 and 20 January, 1975. The profile of the He ii (304 Å) line is everywhere clearly non-gaussian across the solar disk, except in bright active areas. Near the limb, the profile is distinctly reversed. The profile of the Si xi (303 Å) line is essentially gaussian for all regions across the solar disk. Measurements of the He ii/Si xi intensity ratio indicate that the average value of this ratio across the disk depends markedly on solar activity, being about 101 for a moderate level of activity and 301 for a quiet Sun.  相似文献   

19.
The solar wind ions flowing outward through the solar corona generally have their ionic fractions freeze-in within 5 solar radii. The altitude where the freeze-in occurs depends on the competition between two time scales: the time over which the wind flows through a density scale height, and the time over which the ions achieve ionization equilibrium. Therefore, electron temperature, electron density, and the velocity of the ions are the three main physical quantities which determine the freeze-in process, and thus the solar wind ionic charge states. These physical quantities are determined by the heating and acceleration of the solar wind, as well as the geometry of the expansion. In this work, we present a parametric study of the electron temperature profile and velocities of the heavy ions in the inner solar corona. We use the ionic charge composition data observed by the SWICS experiment on Ulysses during the south polar pass to derive empirically the electron temperature profile in the south polar coronal hole. We find that the electron temperature profile in the solar inner corona is well constrained by the solar wind charge composition data. The data also indicate that the electron temperature profile must have a maximum within 2 solar radii. We also find that the velocities of heavy ions in their freeze-in regions are small (<100 km s-1) and different elements must flow at different velocities in the inner corona.  相似文献   

20.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号