首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are presented data on solar emission variations in the extreme ultraviolet range?inebreak (λ < 130 nm) which were obtained on board the CORONAS-I satellite during the solar activity minimum epoch in 1994. Based on the thermoluminescent technique, the measurements were performed using the SUFR (Solar Ultraviolet Radiometer) equipment for recording the solar emission flux at λ < 130 nm. The technique provides absolute measurements. The intensity of the Heii 30.4 nm line emission was also measured on board the CORONAS by means of the Vacuum Ultraviolet Solar Spectrometer (VUSS), which uses gas-photoelectron energy and intensity analysis to register the spectrum. The characteristics of both devices are given, as well as calibration methods and the main results. The observation period may be characterized by a very low activity level. The solar flux in the region λ < 130 nm was 7.5–8 erg cm-2 s-1, the Lα line intensity was~ (3.3 –3.7) × 1011 photon cm-2 s-1 and the Heii (30.4 nm) line intensity was (6–7.5) × 109 photon cm-2 s-1. Intensive solar flares were not registered during the period of observation. During the flare of B4.5 X-ray class (30 June 1994, 01:08 UT), an increase of flux of ~ 15% was registered in the range λ < 130 nm.  相似文献   

2.
McMath plage region 8818 passed over the visible solar disk on May 17–31, 1967. It was very active from its first appearance on the Eastern limb, several times producing bright optical flares and hard X-ray emission, accompanied by intense type II, type IV and centimeter radio bursts. Nevertheless, no solar particles could be detected near the earth until the evening of May 23, when three bright flares were observed in close succession at 25°–28° E. During the following build-up of the solar particle flux over 36 hours, the galactic cosmic ray flux > 1 GeV decreased gradually by about 5%. The flux of solar particles decreased in two steps on May 25, both accompanied by decreases in the equatorial geomagnetic field. These field depressions are attributed to storm plasma ejected from the parent flare of the May 23 particle event. The propagation of solar particles from May 23 on thus appears to be strongly affected by storm plasma from the parent flare of the May 23 event, without any indications of solar particles being trapped in that plasma.A later particle event early on May 28 was also associated with a bright flare in McMath region 8818, at 33° W. This event displayed a rapid build-up, with electrons arriving first, and an exponential decay. A smooth proton peak, 20 min wide, was detected on May 30 closely associated with an SSC attributed to plasma ejection from the parent flare of the May 28 event.Between the geomagnetic storms beginning on May 25 and May 30 an anomalous daily variation was observed in the cosmic ray flux >1 GeV, the time of maximum falling 7–10 hours earlier than normal. Storm time increases in the flux of galactic cosmic rays were seen on May 26 when the equatorial geomagnetic field was depressed by more than 400 . Low latitude auroras were also observed during that time.On leave from the University of Uppsala, Sweden.  相似文献   

3.
The active region associated with Mt. Wilson sunspot group 18 935 (McMath, 11 976) which had a central meridian passage on August 4 and 5, 1972 produced a number of flares during transit. These included two importance 3B flares on August 4 and 7 as well as several of importance 1 and 2. Calculations of the total magnetic flux in this region were made during the period July 31 through August 9 using data from six observatories. For the 3B flare on August 4, the total flux changed from about 7.2 × 1022 Mx just before onset to about 5.6 × 1022 Mx two hours after onset. For the 3B flare on August 7, the flux was about 6.4 × 1022 Mx three hours before onset and about 5.2 × 1022 Mx three hours after onset. An importance 2B flare on August 2 had no measurable effect on the flux nor did any of several 1N or 1B flares which also occurred in this region during the period. The flux changes measured for the 3B flares occurred in the umbral and penumbral fields and no significant changes were observed in facular fields.The Aerospace Corporation, P.O. Box 92957, Los Angeles, Calif. 90009, U.S.A.  相似文献   

4.
Extensive data from the Solar Maximum Mission (SMM) and ground-based observatories are presented for two flares; the first occurred at 12:48 UT on 31 August, 1980 and the second just 3 min later. They were both compact events located in the same part of the active region. The first flare appeared as a typical X-ray flare: the Caxix X-ray lines were broadened ( 190±40 km s-1) and blue shifted ( 60±20 km s-1) during the impulsive phase, and there was a delay of about 30 s between the hard and soft X-ray maxima. The relative brightness of the two flares was different depending on the spectral region being used to observe them, the first being the brighter at microwave and hard X-ray wavelengths but fainter in soft X-rays. The second flare showed no significant mass motions, and the impulsive and gradual phases were almost simultaneous. The physical characteristics of the two flares are derived and compared. The main difference between them was in the pre-flare state of the coronal plasma at the flare site: before the first flare it was relatively cool (3 × 106 K) and tenuous (4 × 109 cm-3), but owing to the residual effects of the first flare the coronal plasma was hotter (5 × 106 K) and more dense (3 × 1011 cm-3) at the onset of the second flare. We are led to believe from these data that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence.A simple study of the brightest flares observed by the SMM shows that at least 43% of them are multiple. Thus, the situation studied here may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters. We draw a number of conclusions from this study. First, the evolution of the second flare is substantially affected by the presence of the first flare. Secondly, the primary energy release in the second event is in the corona. Thirdly, the flares occur in a decaying magnetic region, probably as a result of the interaction of existing sheared loops; there is no evidence of emerging magnetic flux. Also, magnetic structures of greatly varying size participate in the flare processes. Lastly, there is some indication that the loops are not symmetrical or stable throughout the flares, i.e. the magnetic field does not act as a uniform passive bottle for the plasma, as is often assumed in flare models.NOAA/Space Environment Laboratory, currently at NASA/MSFC, Ala., U.S.A.Now at Sacramento Peak Observatory, Tucson, Ariz., U.S.A.  相似文献   

5.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

6.
We present, for the first time, an analysis of seven intense X-ray flares observed from six stars (LAV 796, LAV 1174, SHM2002 3734, 2MASS 02191082+5707324, V553 Car, V557 Car). These stars are located in the region of young open star clusters NGC 869 and IC 2602. These flares detected in the XMM-Newton data show a rapid rise (10–40 min) and a slow decay (20–90 min). The X-ray luminosities during the flares in the energy band 0.3–7.5 keV are in the range of 1029.9 to 1031.7 erg s?1. The strongest flare was observed with the ratio ~13 for count rates at peak of the flare to the quiescent intensity. The maximum temperature during the flares has been found to be ~100 MK. The semi-loop lengths for the flaring loops are estimated to be of the order of 1010 cm. The physical parameters of the flaring structure, the peak density, pressure and minimum magnetic field required to confine the plasma have been derived and found to be consistent with flares from pre-main sequence stars in the Orion and the Taurus-Auriga-Perseus region.  相似文献   

7.
A complex eruptive event took place on January 17, 1974 at approximately 19:20 UT in McMath Hulbert Plage No. 12 686, located near N 06o and behind the west limb. The effects were recorded by the XUV spectroheliograph on Skylab from 19:44 UT to 20:46 UT. An eruptive prominence of spray was observed in Heii 304 Å to reach >1R s. It was also photographed in many emission lines at temperatures reaching 1 MK in Mgix. There were at least four other parts of the eruption, each changing character differently with temperature. These first appeared with Ne.vii at 0.6 MK, and were recorded in lines of ions up to Fexvi at 2.6 MK.  相似文献   

8.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

9.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
It is known that ??-type sunspot groups have a high flare productivity and produce strong flares. In particular, ?|?? type sunspots are the most active type of all. A ?|?? active region NOAA?9957 with frequent flux cancellations but without any marked flare activity during its decay phase was studied in this work. Using SOHO/MDI Dopplergrams and magnetograms, we detected continuous prominent downflow motions of 1500??C?1700?m?s?1 for several hours on the magnetic neutral line in this region. In the downflow region, penumbral structures were observed to decay. We will interpret and discuss the phenomenon as a case of submergence of the magnetic flux.  相似文献   

11.
Krucker  Säm  Lin  R.P. 《Solar physics》2002,210(1-2):229-243
Hard X-ray lightcurves, spectrograms, images, and spectra of three medium-sized flares observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) are presented. Imaging spectroscopy of the 20 February 2002, 11:06 UT flare at 10′′ spatial resolution, comparable to the best previous hard X-ray imaging from Yohkoh, shows two footpoints with an ∼ 8 s delay of peak emission between footpoints. Subsequent imaging at le4′′ shows three sources consistent with two separate loops and simultaneous brightening in connected footpoints. Imaging for the simple two footpoint flare of 2 June 2002 also shows simultaneous footpoint brightening. The more complex 17 March 2002 flare shows at least four different sources during the main peak of the event, and it is difficult to clearly demonstrate simultaneous brightening of connected footpoints. Non-thermal power laws are observed down to ∼ 12–13 keV without flattening in all these events, indicating the energy content in energetic electrons may be significantly greater than previously estimated from assumed 25 keV low energy cutoff. Simultaneously brightening footpoints show similar spectra, at least in the three flares investigated. Double-power-law spectra with a relatively sharp break are often observed. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022469902940  相似文献   

12.
Mathew  Shibu K.  Ambastha  Ashok 《Solar physics》2000,197(1):75-84
Active region NOAA 8038 was observed from 10 to 13 May, 1997 using the USO solar video magnetograph. During this period, the active region was mostly inactive, and gave rise to only a single notable flare of 1N/C1.3 class on May 12, 1997/04:45 UT. The flare occurred in a weak field location, but new emerging fluxes were observed prior to the flare onset. Horizontal motions of the network photospheric magnetic fluxes were inferred using USO and SOHO magnetograms, and velocities in the range 300–800 m s–1 were estimated. The initial flare brightening was observed at the flux cancellation site where magnetic field gradients were found to increase. Detailed analyses of flux motions, cancellation and their relation with the flare are presented.  相似文献   

13.
We present the analysis of observations of the August flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms and spectra. In each flare the observations fit a model of particle acceleration in the chromosphere with emission produced by impact and by heating by the energetic electrons and protons. The region showed inverted polarity and high gradients from birth, and flares appear due to strong magnetic shears and gradients across the neutral line produced by sunspot motions. Post flare loops show a strong change from sheared, force-free fields parallel to potential-field-like loops, perpendicular to the neutral line above the surface.We detected fast (5 s duration) small (1') flashes in 3835 at the footpoints of flux loops in the August 2 impulsive flare at 1838 UT, which may be explained by dumping of > 50 keV electrons accelerated in individual flux loops. The flashes show excellent time and intensity agreement with > 45 keV X-rays. In the less impulsive 2000 UT flare a less impulsive wave of emission in 3835 moved with the separating footpoints. The thick target model of X-ray production gives a consistent model for X-ray, 3835 and microwave emission in the 18:38 UT event.Spectra of the August 7 flare show emission 12 Å FWHM in flare kernels, but only 1 to 2 Å wide in the rest of the flare. The kernels thus produce most of the H emission. The total emission in H in the August 4 and August 7 flares was about 2 × 1030 erg. We belive this dependable value more accurate than previous larger estimates for great flares. The time dependence of total H emission agrees with radio and X-ray data much better than area measurements which depend on the weaker halo.Absorption line spectra show a large (6 km/s-1) photospheric velocity discontinuity across the neutral line, corresponding to sheared flow across that line.This work has been supported by NASA under NGR 05 002 034, NSF Atmospheric Sciences program under GA 24015, and AFCRL under FI9628-73-C-0085.  相似文献   

14.
When magnetic flux emerges from beneath the photosphere, it displaces the preexisting field in the corona, and a current sheet generally forms at the boundary between the old and new magnetic domains. Reconnection in the current sheet relaxes this highly stressed configuration to a lower energy state. This scenario is most familiar and most often studied in flares, where the flux transfer is rapid. We present here a study of steady, quiescent flux transfer occurring at a rate three orders of magnitude lower than that in a large flare. In particular, we quantify the reconnection rate and the related energy release that occurred as the new polarity emerged to form NOAA Active Region 11112 (SOL16 October 2010T00:00:00L205C117) within a region of preexisting flux. A bright, low-lying kernel of coronal loops above the emerging polarity, observed with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory and the X-ray Telescope onboard Hinode, originally showed magnetic connectivity only between regions of newly emerged flux when overlaid on magnetograms from the Helioseismic and Magnetic Imager. Over the course of several days, this bright kernel advanced into the preexisting flux. The advancement of an easily visible boundary into the old flux regions allows measuring the rate of reconnection between old and new magnetic domains. We compare the reconnection rate with the inferred heating of the coronal plasma. To our knowledge, this is the first measurement of steady, quiescent heating related to reconnection. We determined that the newly emerged flux reconnects at a fairly steady rate of 0.38×1016 Mx?s?1 over two days, while the radiated power varies between (2?–?8)×1025 erg?s?1 over the same time. We found that as much as 40 % of the total emerged flux at any given time may have reconnected. The total amounts of transferred flux (~?1×1021 Mx) and radiated energy (~?7.2×1030 ergs) are comparable to that of a large M- or small X-class flare, but are stretched out over 45 hours.  相似文献   

15.
Cinematic, photometric observations of the 3B flare of August 7, 1972 are described in detail. The time resolution was 2 s; the spatial resolution was 1–2″. Flare continuum emissivity at 4950 Å and at 5900 Å correlated closely in time with the 60–100 keV non-thermal X-ray burst intensity. The observed peak emissivity was 1.5 × 1010 erg cm?2 s?1 and the total flare energy in the 3900–6900 Å range was ~1030 erg. From the close temporal correspondence and from the small distance (3″) separating the layers where the visible emission and the X-rays arose, it is argued that the hard X-ray source must have had the same silhouette as the white light flare and that the emission patches had cross-sections of 3–5″. There was also a correlation between the location of the most intense visible emissions near sunspots and the intensity and polarization of the 9.4 GHz radio emission. The flare appeared to show at least three distinct particle acceleration phases: one, occurring at a stationary source and associated with proton acceleration gave a very bluish continuum and reached peak intensity at ~ 1522 UT. At 1523 UT, a faint wave spread out at 40 km s?1 from flare center. The spectrum of the wave was nearly flat in the range 4950–5900 Å. Association of the wave with a slow drift of the microwave emission peak to lower frequencies and with a softening of the X-ray spectrum is interpreted to mean that the particle acceleration process weakened while the region of acceleration expanded. The observations are interpreted with the aid of the flare models of Brown to mean that the same beam of non-thermal electrons that was responsible for the hard X-ray bremsstrahlung also caused the heating of the lower chromosphere that produced the white light flare.  相似文献   

16.
A review is given of observations and theories relevant to the solar flare of 21 May, 1980, 20 ∶ 50 UT, the best studied flare on record. For more than 30 hr before the flare there was filament activation and plasma heating to above 10 MK. A flare precursor was present ≥6 min before the flare onset. The flare started with filament activation (20 ∶ 50 UT), followed by thick-target heating of two footpoints and subsequent ablation and convective evaporation involving energies of 1 to 2 × 1031 erg. Coronal explosions occurred at 20 ∶ 57 UT (possibly associated with a type-II burst) and at 21 ∶ 04 UT (associated with an Hα spray?). Post-flare loops were first seen at 20 ∶ 57 UT, and their upward motion is interpreted as a manifestation of successive field-line reconnections. A type-IV radio burst which later changed into a type-I noise storm was related to a giant coronal arch located just below the radio noise storm region. Some implications and difficulties these observations present to current flare theories are mentioned.  相似文献   

17.
Shortly after the dynamic flare of 14 44 UT on 6 November, 1980, which initiated the second revival in the sequence of post-flare coronal arches of 6–7 November, a moving thermal disturbance was observed in the fine field of view of HXIS. From 15 40 UT until about 18 UT, when it left the field of view, the disturbance rose into the corona, as indicated by a projected velocity of 7.4 km s-1 in the south-east direction. The feature was located above the reconnection region of the dynamic flare and was apparently related to the revived coronal arch. Observations in the coarse field of view after 18 UT revealed a temperature maximum in the revived arch, rising with a velocity of 7.0 km s-1 directly in continuation of the thermal disturbance. The rise velocity of the disturbance was initially (at least until 17 20 UT) very similar to the rise velocities observed for the post-flare loop tops of the parent flare. This suggests that the rise of the reconnection point, in the Kopp and Pneuman (1976) mechanism responsible for the rise of the loop tops, also dictates the rise of the disturbance. From energy requirements it follows that in this phase the disturbed region is still a separate magnetic island, thermally isolated from the old arch structure and the post-flare loops. After 18 UT the rise of the post-flare loop tops slowed down to 2 km s-1, which is significantly slower than the rise of the brightness and temperature maxima of the revived arch in the coarse field of view. Thus in this phase the Kopp and Pneuman mechanism is no longer directly responsible for the rise of the thermal structure and the rise possibly reflects the merging of the old and the new arch structures.A similar thermal disturbance was observed after the dynamic flare of 07: 53 UT on 4 June, 1980. On the other hand, the confined flare of 17 25 UT on 6 November, 1980, did not show this phenomenon. Apparently this type of disturbance occurs after dynamic flares only, in particular when the flare is associated with an arch revival.  相似文献   

18.
A statistical analysis of the contemporary (1954-1975) solar flare particle events has been made for the parametersF (integrated, proton fluence in cm-2 in an event with kinetic energy above 10 MeV) andR 0 (the characteristic rigidity). These data are compared with the long-term averaged values determined from stable- and radio-nuclide measurements of lunar samples. The analysis shows that the ancient solar flare proton spectrum was harder (higher R0 values) compared to that observed in contemporary flares. A similar analysis can not be made for the mean long-term averaged flux (ˉJ, cm-2 S-1), since the contemporary averages suffer from an uncertainty due to the statistics of a single event. However, the average flux estimates for time durations 〈T〉 exceeding 103 yr, are free from such uncertainties. The long-term averaged ˉJ values obtained over different time scales (104 - 106 yr) suggest a possible periodic variation in solar flare activity, with enhanced flux level during the last 105 yr. The available data rule out the occurrence of giant flares, with proton fluence exceeding 1015 cm-2 during the last million years.  相似文献   

19.
The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active-region X-ray spectra in four channels covering the wavelength range 3.8?–?6.1 Å in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00?–?6.05 Å). The fluxes of the Si?xiv Ly-β line (5.217 Å) and the Si?xiii 1s 2?–?1s3p line (5.688 Å) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21 (Si?xiv) and 7.89±.13 (Si?xiii) on a logarithmic scale with H=12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.3 and 2.4±0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号