首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

2.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

3.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

4.
Biochemical composition of surface sediment samples from off major and minor rivers along the east coast of India revealed that spatial distribution of sediment organic carbon (SOC) composition was mainly governed by differential characteristics of discharged water and associated biogeochemical processes in the water column. The northwest (NW) region of coastal Bay of Bengal was influenced by discharges from Ganges river while peninsular (monsoonal) rivers influenced the southwest (SW) region. The NW region characterized by low nutrients suspended particulate matter (SPM), high phytoplankton biomass in the water column and high SOC while contrasting to that observed in the SW region. The isotopic ratios of SOC (?22 ‰) in the NW region were close to that of organic matter derived from phytoplankton (?23 ‰) suggesting in situ production is the major source whereas terrigeneous source contributed significantly in the SW region (?19.6 ‰). Though low in situ biological production in the SW region, relatively higher total carbohydrates (TCHO) were found than in the NW and insignificant difference of total and free amino acid concentrations between NW and SW were resulted from faster removal of organic matter to the sediment in association with SPM in the SW region. Higher proteins concentrations than total amino acids indicate that nitrogenous organic matter is preserved in the former form. The protein to TCHO ratio was lower in the SW suggesting significant contribution of aged and non-living organic matter in this region.  相似文献   

5.
Confidence in the use of macroalgae as an indicator of estuarine eutrophication is limited by the lack of quantitative data on the thresholds of its adverse effects on benthic habitat quality. In the present study, we utilized sediment profile imagery (SPI) to identify thresholds of adverse effects of macroalgal biomass, sediment organic carbon (% OC) and sediment nitrogen (% N) concentrations on the apparent Redox Potential Discontinuity (aRPD), the depth that marks the boundary between oxic near-surface sediment and the underlying suboxic or anoxic sediment. At 16 sites in eight California estuaries, SPI, macroalgal biomass, sediment percent fines, % OC, and % N were analyzed at 20 locations along an intertidal transect. Classification and Regression Tree (CART) analysis was used to identify step thresholds associated with a transition from "reference" or natural background levels of macroalgae, defined as that range in which no effect on aRPD was detected. Ranges of 3–15 g dw macroalgae m?2, 0.4–0.7 % OC and 0.05–0.07 % N were identified as transition zones from reference conditions across these estuaries. Piecewise regression analysis was used to identify exhaustion thresholds, defined as a region along the stress–response curve where severe adverse effects occur; levels of 175 g dw macroalgae m?2, 1.1 % OC and 0.1 % N were identified as thresholds associated with a shallowing of aRPD to near zero depths. As an indicator of ecosystem condition, shallow aRPD has been related to reduced volume and quality for benthic infauna and alteration in community structure. These effects have been linked to reduced availability of forage for fish, birds and other invertebrates, as well as to undesirable changes in biogeochemical cycling.  相似文献   

6.
An exploratory study was carried out at 22 sampling stations along the Langat River, Selangor in order to investigate on the vitality of cation exchange capacity (CEC) in sediment (0–5 cm). Parameters such as pH, Eh, salinity, and electrical conductivity (EC) were determined. The CEC in sediment has been calculated by the determination of Ca2+, Na+, Mg2+, and K+ using the flame atomic absorption spectrophotometer, while the organic matter content in sediment was ascertained using the loss on ignition method. The characteristic of the sediment shows that pH (3.09–7.46), salinity (0.02–10.71 ppt), EC (3.39–517 μS/cm) and Eh (?16.20–253.10 mV) were substantially high in variation. This study also revealed that exchangeable Ca2+ and Mg2+ were controlled by organic matter contents, while exchangeable Na+ and K+ were influenced by salinity. Salinity was observed to play a major part in controlling all the exchangeable cations, as it gives strong significant correlations with Na+, K+, Mg2+, CEC, and organic matter at p?<?0.01. The presence of seawater, clay mineralogy, and organic matter proves that it does play an important role in determining the CEC and soon relates to the pollution magnitude in the sediment.  相似文献   

7.
Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the brittle star A. filiformis. The numerous burrows were intensively irrigated enhancing the benthic in situ O2 uptake by ~50 %, and inducing highly variable redox conditions and O2 distribution in the surface sediment as also documented by complementary laboratory-based planar optode measurements. The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m?2 day?1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic redox conditions that presumably facilitated an efficient degradation of both terrestrial and marine-derived organic material. The complex O2 dynamics of the burrow environment also concurrently stimulated nitrification and coupled denitrification rates making the sediment an efficient sink for bioavailable nitrogen. Furthermore, bioturbation mediated a high efflux of dissolved phosphorus and silicate. The study documents a high spatial and temporal variation in benthic solute exchange with important implications for benthic turnover of organic carbon and nutrients. However, more long-term in situ investigations with like approaches are required to fully understand how environmental events and spatio-temporal variations interrelate to the overall biogeochemical functioning of coastal sediments.  相似文献   

8.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

9.
The relationship among H2S, total organic carbon (TOC), total sulfur (TS) and total nitrogen contents of surface sediments (0–1 cm) was examined to quantify the relationship between H2S concentrations and TOC content at the sediment water interface in a coastal brackish lake, Nakaumi, southwest Japan. In this lake, bottom water becomes anoxic during summer due to a strong halocline. Lake water has ample dissolved SO4 2? and the surface sediments are rich in planktic organic matter (C/N 7–9), which is highly reactive in terms of sulfate reduction. In this setting the amount of TOC should be a critical factor regulating the activity of sulfate reduction and H2S production. In portions of the lake where sediment TOC content is less than 3.5 %, H2S was very low or absent in both bottom and pore waters. However, in areas with TOC >3.5 %, H2S was correlated with TOC content (pore water H2S (ppm) = 13.9 × TOC (%) ? 52.1, correlation coefficient: 0.72). H2S was also present in areas with sediment TS above 1.2 % (present as iron sulfide), which suggests that iron sulfide formation is tied to the amount of TOC. Based on this relationship, H2S production has progressively increased after the initiation of land reclamation projects in Lake Nakaumi, as the area of sapropel sediments has significantly increased. This TOC–H2S relationship at sediment–water interface might be used to infer H2S production in brackish–lagoonal systems similar to Lake Nakaumi, with readily available SO4 2? and reactive organic matter.  相似文献   

10.
El Bey river, which drains 60% of the pollutant load of several urban cities in the northeast of Tunisia, provides a good example of the transfer of organic and metallic pollutants that result from industrial and urban activity, and can be used to show how these charges are transported and discharged into the Gulf of Tunis. Persistent organic pollutants (PAH and PCB) in dissolved, particulate matter, bed sediments, and three wastewater effluents in El Bey watershed were analyzed. PAH (∑14PAHs) concentration ranged from 0.248 to 9.955 mg L?1 and from 0.836 to 28.539 mg L?1 in dissolved and particulate fraction respectively. The particulate/dissolved partition coefficient value (Kd) was less than one which confirmed the affinity of PAH to be adsorbed. In sediment, the high-molecular weight PAHs were found principally with percentage between 50 and 100% witch present 239.99 to 5362.19 μg kg?1, which is relatively higher in comparison with other estuaries river. Contrary to PAH patterns, PCB were bound to dissolve fraction. Kd (PCB) value (Kd?>?1) reflected this affinity which is related to environment energy. The spatial distribution and profile of analyzed organic pollutants confirmed the direct impact of wastewater effluent on the organic pollution level in three compartment of El Bey watershed and his profiles suggested different transport patterns.  相似文献   

11.
The Riogrande II reservoir in Colombia has a total storage capacity of 240 million m3 and lies 2,270 m above sea level. The reservoir is used for power generation, water supply and environmental improvement. Dissolved manganese (Mn) is removed from reservoir water dedicated to domestic use by purification processes. Removal of Mn, however, poses a major challenge to purification processes and warrants the study of ways to naturally reduce dissolved Mn levels in the reservoir. The source of Mn within the reservoir is not well understood, however, presumably arises from sediment mobilization initiated by variation in pH, redox potential (ORP or Eh), dissolved oxygen (O2) and ionic strength conditions. This study investigated conditions within the reservoir to further understand Mn transfer from the sediment into the water column. O2, pH, oxidation–reduction potential (ORP or Eh), organic matter content and electric conductivity were measured in water samples and sediment from the reservoir. Sequential extraction (SE) procedures were used to test the specific effects exerted by each of these conditions on Mn mobilization from the sediments. The European Community Bureau of Reference (BCR) sequential extraction procedure was used to quantify metals in sediment (referred to as the BCR extraction below). Statistical analysis of geochemical data from water samples (both water column and sediment pore water) and sediments demonstrated the conditions under which Mn can be released from sediments into the water column. The results indicated a primarily oxic water column and anoxic reducing conditions in the sediment (ORP or Eh ≤ ?80 mV). The pH of water in contact with bottom sediments varied from 7.6 to 6.8. The pH of sedimentary pore water varied from 6.8 to 4.7. The sediments contained significant amounts of organic matter (20 %). Chemical extractions showed that the exchangeable fraction contained over 50 % of the total Mn within sediments. Microscopic analysis using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) indicated that Mn does not occur within well-crystallized mineral phases in the Riogrande II sediments. A large proportion of Mn exists instead as material adsorbed onto the surfaces of recently deposited sediment particles. Bacterial oxidation of organic matter may cause the observed anoxic conditions at the bottom of the reservoir. Mineralization of organic matter therefore contributes to reducing conditions within the sediments. Mobilization of Mn from the sediment into the water column may result from reductive dissolution of this fraction. Manganese release by this mechanism diminishes the water quality of the Riogrande II reservoir and warrants further study.  相似文献   

12.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   

13.
Quantifying Sediment Nitrogen Releases Associated with Estuarine Dredging   总被引:1,自引:0,他引:1  
Experimental studies of sediment pore water NH4 + chemistry, adsorbed NH4 + concentrations, sediment?Cwater NH4 + exchange and N2?CN flux were carried out to quantify the mass of labile N that can be released during large-scale dredging activities. Pore water NH4 + concentrations below 0.5-m sediment depth averaged 5 ± 2 mmol L?1 with average adsorbed NH4 + concentrations of 11 ??mol g?1. Elevated NH4 + concentrations found in rapidly accreting dredge channels are partly a result of the rapid advective burial of both reactive organic matter and pore water. Elutriate tests, a dilution of sediment with site water, yielded adsorbed NH4 + concentrations very similar to those using the more typical KCl extraction. Intact deep sediment sections exposed to overlying water, used to simulate postdredging conditions, showed high initial fluxes of ammonium and no development of coupled nitrification?Cdenitrification under the cold incubation conditions. Despite high concentrations and effluxes of NH4 + during dredging, the amount of NH4 + release during dredging was <0.5% of northern Chesapeake Bay sediment fluxes. The likelihood of large environmental effects of nitrogen release during the dredging of navigational channels in the Chesapeake Bay is low.  相似文献   

14.
The Northeast USA is experiencing severe impacts of a changing climate, including increased winter temperatures and accelerated relative sea level rise (RSLR). The sediment-poor, organic-rich nature of many Southern New England salt marshes makes them particularly vulnerable to these changes. In order to assess how marsh accretion has changed over time, we returned to Narragansett Bay, RI where salt marsh vertical accretion rates were documented almost 30 years ago. Using radionuclide tracers (210Pb and 137Cs), we observe no significant change in overall accretion rates (0.27–0.69 cm year?1) compared to historical averages (0.24–0.60 cm year?1), but we document a shift in how these marshes maintain elevation. Organic matter now plays a smaller role in contributing to vertical accretion across all study sites, declining by 22 % on average. We attribute this reduction to potentially higher decomposition rates fueled by higher water temperature. Inorganic matter also contributes less to accretion (declining by 44 % on average at marshes located more internal to the estuary), likely due to diminishing sediment supply in this region. With organic and inorganic solids accounting for less of the total accretion, several of the marshes are experiencing symptoms of swelling, with water and porespace contributing more towards accretion compared to historical values. Accretion rates (0.27–0.45 cm year?1) at these organic-rich (>40 % sediment organic matter) marshes are predominantly lower than the current (30 years) rate of RSLR (0.41?±?0.07 cm year?1). These results, combined with the increased rate of RSLR and the hardened shorelines inhibiting landward migration, call into question the long-term survivability of these marshes.  相似文献   

15.
The study area lies between 31.32°N, 31.70°E and 31.41°N, 31.78°E along Damietta branch, Nile River. It is about 24-km long. Acoustic classification (Quester Tangent Corporation—QTC) is used as a powerful tool to study seabed characteristics which is confirmed by the sediment analyses. Sediment characteristics of the study are presented by three acoustic classes: sand, mud and organic matter intercalated by clay. The depth varies from about ?12 m at Faraskour Bridge (southern part of the study area) to about ?2.5 m at Faraskour Dam (northern part of the study area). The average current velocity is detected as 4 cm/s and it has a very low effect on the transport of both sediment and waste debris. The sediment in the northern part characterized by organic matter reaches about 70 cm thickness under and around fish cages. This huge amount of organic matter deposit leads to the reduction of the dissolved oxygen and increase pH values. This study shows that the water quality in the northern part of the study area is at risk (drinking water for Damietta city) due to the presence of the huge amount of waste debris intercalated by organic matter. The rises of temperature in summer enhance oxygen consumption and the decomposition of the organic matter. This is rapidly increasing the growth of bacteria and phytoplankton, causing turbidity and algal blooms. Those affect the water quality and raise the water toxicity (drinking water).  相似文献   

16.
Lake Erie is a large lake that has a well documented history of changes in organic matter (OM) production. We have evaluated the hydrocarbon (HC), fatty acid (FA) and fatty alcohol (OL) contents of a century-long sediment core from the lake as recorders of the changes in biogeochemical processes that accompanied its eutrophication. Although variations in the concentrations of the three groups of biomarkers are closely linked to changes in primary productivity within the lake, their molecular distributions reflect different aspects of the biogeochemical processes affecting OM preservation and accumulation. Even numbered n-alkenes from C16–C22 constitute an important fraction of the HC composition. Even numbered dominance is observed in the n-alkanes < C22, and an odd dominance occurs in higher homologs. The source of this unusual HC distribution is uncertain, but may be microorganism populations sustained by anthropogenic oil contaminants. Changes in the relative inputs from terrigenous and aquatic sources are reflected in variations in the distributions of the OLs, whereas the FAs only reflect aquatic input and a dominance of aquatic organisms. Post-burial diagenetic alteration of OM is especially evident from decreases in the unsaturated and branched FAs with depth.  相似文献   

17.
Concentrations and vertical distributions of total nitrogen (TN), total phosphorus (TP) and their different forms in sediments obtained from nine locations of Lake Dalinouer in September 2008 were analyzed. The results demonstrated that TP in surface sediments ranged from 0.493 to 0.904 g/kg, and inorganic phosphorus was the main fraction of total phosphorus, ranging from 335 to 738 mg/kg. Simultaneously, the autogenetic calcium phosphorus (ACa-P) was the main fraction of inorganic phosphorus, ranging from 145.4 to 543.2 mg/kg. Vertical distribution of different phosphorus forms in different sediment cores was distinguishing, and most of them tended to increase toward the surface sediment, indicated that the phosphorus concentration was related to the humanity with a certain extent. The relationships between TP and occluded phosphorus and ACa-P were significant. Nitrogen in the sediment was composed mainly of organic nitrogen, accounting for grater than 80 % of TN. NO3 ?-N was the dominate fraction of inorganic nitrogen in the surface sediment, ranging between 51 and 346 mg/kg (151.1 ± 104.4 mg/kg), and accounting for between 2.2 and 17.7 % of total sediment nitrogen (6.2 ± 5.6 %). The ratio of organic carbon and TN in sediment was in range of 6.0–25.8 and presented a tendency of lake centre >lake sides, indicating that nitrogen accumulated in the sediments from lake sides came mainly from terrestrial source and nitrogen was mainly autogenetic in lake centre. Ratio of N:P in all sampling sites was below 14, indicated that N was the limiting nutrient for algal growth in this lake.  相似文献   

18.
Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C)wa 0.52) and contained less hydrogen ((H/C)wa 1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.  相似文献   

19.
Marsh sediment accumulation is predominately a combination of in situ organic accumulation and mineral sediment input during inundation. Within the Pamlico River Estuary (PRE), marsh inundation is dependent upon event (e.g., storms) and seasonal wind patterns due to minimal astronomical tides (<10 cm). A better understanding of the processes controlling sediment deposition and, ultimately, marsh accretion is needed to forecast marsh sustainability with changing land usage, climate, and sea level rise. This study examines marsh topography, inundation depth, duration of inundation, and wind velocity to identify relationships between short-term deposition (tile-based) and long-term accumulation (210Pb and 137Cs) recorded within and adjacent to the PRE. The results of this study indicate (1) similar sedimentation patterns between the interior marsh and shore-side marsh at different sites regardless of elevation, (2) increased sedimentation (one to two orders of magnitude, 0.04–4.54 g m?2 day?1) within the interior marsh when the water levels exceeded the adjacent topography (e.g., storm berm), and (3) that short-term sea level changes can have direct effects on sediment delivery to interior marshes in wind-driven estuarine systems.  相似文献   

20.
Thermokarst lakes, formed during permafrost thaw in Western Siberia Plain over past tens to hundreds years, cover overall territory close to million km2 and may represent significant source of CO2 and CH4 to the atmosphere. These acidic (3 < pH < 6) and humic [10 < dissolved organic carbon (DOC) < 50 mg/L] lakes are essentially inhabited by heterotrophic bacterioplankton with rare phytoplankton bloom occurring during warm periods. In order to understand possible effects of phytoplankton bloom on thermokarst lake hydrochemistry under climate warming scenario, we cultured pure cyanobacterium (Gloeocapsa sp.) and native cyanobacterial associate separated from the natural lake water. As substrates, sterilized thermokarst lake water and peat leachate from western Siberia were used. In these laboratory microcosm experiments which lasted 10 days, we monitored daily pH, biomass, DOC, and 40 major and trace elements. Despite significant variation of pH (4 to ~10.5) and biomass (a factor of 3–5), very few dissolved elements responded to massive cyanobacterial growth. The DOC varied within a factor of 1.2–1.5, exhibiting slow increase due to exometabolite production in thermokarst lake water and an initial decrease due to photodegradation in peat leachate. Elements appreciably affected by photosynthesis in both lake water and peat leachate substrates were P, Zn, Mn, and, in a lesser degree, Cd, K, Rb, Sr, Ba, Cr, Al, and U. While P, K (Rb), Mn, and Zn removal from solution during cell growth could be linked to biological demand by cyanobacteria, the adsorption of Cd, Sr, Ba, Al, Cr, U on the cell surface in response to the pH rise is most likely. Many other trace elements did not exhibit any significant evolution of the concentration during 10-day experiment either due to their strong complexation with allochthonous organic matter and essentially organic/organo-mineral colloidal status (Fe, Ni, Co, Cu, Pb, REEs, Ti, Zr, Hf, Th) or due to the lack of element interaction with cyanobacterial cells, via both adsorption and intracellular uptake (B, Si, V, Mo, As, Sb, Cs). Therefore, possible intensification of cyanobacterial bloom in thermokarst lakes caused by leaching of thawing peat will likely affect only few macronutrients and micronutrients such as P, K, Mn, and Zn, while the majority of trace elements bound to allochthonous DOC in the form of organic and organo-mineral colloids will not be affected by cyanobacterial biomass production and pH rise due to photosynthesis. Cyanobacterial bloom in organic-rich (20 mg DOC/L) thermokarst lakes exhibited significant potential of carbon sequestration from the atmosphere, which is more than an order of magnitude higher than the CO2 evasion due to heterotrophic plankton respiration of allochthonous DOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号