首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Massive Zn‐Pb‐Ag sulfide mineralization appears conformable with felsic volcanism, developed in an Upper Jurassic volcanic arc to the Southwest (SW) of the Serbo‐Macedonian continent in Northern Greece. The host volcanic sequence of the mineralization comprises mylonitized rhyolitic to rhyodacitic lavas, pyroclastics, quartz‐feldspar porphyries, and cherty tuffs. A “white mica—quartz—pyrite” mineral assemblage characterizes the volcanic rocks in the footwall and hanging‐wall of massive sulfide ore layers, formed as a result of greenschist‐grade regional metamorphism on “clay‐quartz‐pyrite” hydrothermal alteration haloes. Massive ore lenses are usually underlain by deformed Cu‐pyrite and quartz‐pyrite stockworks. Most of the sulfide ore bodies have proximal‐type features. Ductile deformation and regional metamorphism have transformed many of the stockwork structures. The mineralization is characterized by high Zn, Pb, and Ag contents, while Cu and critical metals are low. Primary depositional textures, for example, layering, clastic pyrite, colloform, and atoll textures were identified. The overall textural features of the mineralization indicate it has undergone mechanical deformation. The most prominent features of the effects of metamorphism, folding and shearing, are modification of the ore body morphology toward flattened and boudinage structures and transformation of the ore textures toward the dominance of planar fabrics. Sulfur isotope analyses of sulfides along with textural observations are consistent with a dual source of sulfide sulfur. Sulfur isotope values for sphalerite, non‐colloform pyrite, galena, and chalcopyrite fall in a limited range from ?1.6 to +4.8‰ (mean δ34S + 2‰), indicating a hydrothermal source derived from the reduction of coeval seawater sulfate in the convective system. Pyrites with colloform and atoll textures are characterized by a 34S depletion, indicating a bacterial reduction of coeval seawater sulfate. The morphology of ore beds, the mineralogy, sulfide textures, and ore chemistry along with the petrology and tectonic setting of the host rocks can be attributed to typical of a bimodal‐felsic metallogenesis. Although similar in many respects to classic Kuroko‐type volcanogenic massive sulfide mineralization, it has some atypical features, like the absence of barite ore, which is possibly a result of significant temporal depletion in sulfate due to bacterial reduction, a conclusion supported by the widespread occurrence of colloidal and atoll textures of pyrite.  相似文献   

2.
北山地区与火山活动有关的铜多金属矿床主要有次火山斑岩型、火山喷溢型、火山沉积-变质型、沉积再造型和热液型,其中次火山斑岩型和火山沉积再造型是主要类型.通过对主要类型控矿条件的分析,得出与火山活动有关的斑岩型和海相沉积(改造)型多金属矿具有良好的找矿前景,并指出了具体的远景地区,认为本区不利于寻找海相火山岩块状硫化物型矿床.  相似文献   

3.
Abstract: The Ashele Cu-Zn deposit is a recently discovered volcanogenic massive sulfide deposit in Xinjiang, Northwestern China. It is the largest Cu-Zn deposit in this type of deposits in China, which were formed in the early period of later Palaeozoic Era. This deposit is hosted within a suit of bimodal submarine volcanic rocks of the Ashele Formation of Lower-Middle Devonian System formed in an environment of paleocontinental margin rift setting. Lensoid orebodies occur between spilitic rocks developed at footwall and quartz-keratophyric tuff at hanging wall. Zonation of metal elements in the Ashele mine is one of typical volcanic-related exhalative Cu-Zn sulfide deposits in the world. Black ores enriched in Pb, Zn and Ag occurs on the top of the No. 1 orebody in the Ashele deposit, yellow ores enriched in Cu in the middle part, and the chalcopyritization stringer below the massive sulfide ores. Zonation of ore-structure in the No. 1 orebody is also apparent and corresponds to the zoning of elements, i. e. lamellar and/or banded sulfide-sulfate ores on the top, massive sulfide ores in the middle, and stockwork veinlets associated with altered breccia pipe on the bottom. Four epochs of mineralization in the Ashele deposit has been recognized. The first period of syngenetic-exhalative deposition of sulfides is the main epoch of mineralization, and the ores deposited subsequently subjected to thermo-metamorphism at the second epoch, superimposed by hydrothermal mineralization at the third epoch, and weathered or oxidized at the fourth epoch.
More than 100 categories of minerals have been recognized in the Ashele mine, but only pyrite, chalcopyrite, sphalerite, tetrahedrite, galena, barite, quartz, chlorite, sericite, and calcite are dominant, making up various types of ores, and alteration pipes or horizons. Studies of ore petrology suggest that the massive ores were volcanogenic and deposited by exhalative process.  相似文献   

4.
铜陵矿集区块状硫化物矿床地质特征   总被引:3,自引:0,他引:3  
蚀变-流体填图揭示,铜陵地区石炭系黄龙组喷流沉积含矿岩系中普遍存在块状硫化物矿床,上部为层状块状硫化物矿层,下部为浸染状、细脉-网脉状硫化物矿体,具有典型的双层结构。自下而上矿石具有垂直分带性:硅质矿石、石膏矿石、黄铁矿矿石、黄铁矿-重晶石矿石和菱铁矿.铁质燧石矿石。矿石发育胶状和莓球结构,微细层纹状-马尾丝构造。矿石成分以黄铁矿和菱铁矿为主。矿床发育一套独特的热液气爆角砾岩不规则网脉和相互连通的虫管状.树枝状-姜块状黄铁矿管道系统,矿化形式为弥散式多喷口席状矿化,厚度一般不超过100m。  相似文献   

5.
VMS矿床是中亚造山带的重要矿床类型,在新疆中亚造山带(即新疆北部)主要分布于阿尔泰和东天山的阿舍勒、克兰、麦兹和卡拉塔格矿集区.含矿层位主要有下?中志留统红柳峡组、上志留统?下泥盆统康布铁堡组下亚组和上亚组、下?中泥盆统阿舍勒组和下石炭统小热泉子组海相火山沉积岩系.矿区发育喷流岩,如含铁碧玉岩、重晶石、硅质岩、铁锰质大理岩、黄铁矿层、绿泥石岩.VMS成矿系统中发育多种矿化类型,“双层结构”(层状或透镜状矿体和补给通道相脉状矿体)是其中之一,还有与火山热液有关的脉状矿化、与次火山热液有关的脉状和浸染状矿化.VMS矿床形成于3个成矿期,即早?中志留世(428~438 Ma)、早?中泥盆世(379~413 Ma)和早石炭世(332~359 Ma).硫来自下伏火山岩、海水硫酸盐无机还原作用和硫酸盐细菌还原作用.成矿流体以中低温(300~120 ℃)低盐度(2%~10% NaCleq)为特色,成矿流体为深循环海水混合不同比例的岩浆水.VMS成矿系统中由于受火山机构、岩相、矿化类型、矿化部位、成矿流体来源、物理化学条件等因素影响,造成了成矿元素组合复杂.   相似文献   

6.
The Ar Rjum goldfield is an example of late Neoproterozoic Au mineralization that is hosted by submarine arc assemblage and syn-anorogenic intrusive rocks. Apart from ancient workings, recent exploration in the goldfield defined three main targets along 3 km N–S corridor (Um Na'am, Ghazal and Wasema), and indicated that Wasema alone hosts 11.8 Mt @ 2.5 g/t Au. The majority of gold and sulfide mineralization is confined to diorite, where gold content increases with shearing, pyrite–sericite–carbonate alteration and development stockworks of quartz–carbonate–pyrite veins and stringers. Generally, the concentration of gold increases in the diorite samples that experienced variable degrees of hydrothermal alterations near local shear zones. Anomalous gold content (up to 11.76 g/t) in some metachert is the result of the remobilization of volcanogenic lattice-bound (refractory) Au into free Au due to post-metamorphic hydrothermal alterations. The chemistry of pyrite from the mineralized veins and stringers indicates considerable amounts of gold that reaches ~ 0.3 wt.%.Chlorite that co-exists with pyrite in the hydrothermally altered metavolcanics is mostly sheridanite with up to ~ 25 wt.% FeOt and minor amounts of ripidolite. Chlorite geothermometry suggests that two temperature ranges affecting the area. The first temperature range (290–334 °C) is consistent with regional greenschist facies metamorphism, and the second (306–355 °C) is interpreted to be related to recrystallization-submarine hydrothermal alteration related to the gold mineralization. Stable isotope (δ34S, δ18O and δ13C) data suggest an original volcanogenic arc signature that has been slightly modified by low-grade metamorphism, and finally by the late interaction of hydrothermal fluids. Ore evolution model for the Ar Rjum goldfield includes seafloor sulfide alteration, several deformation episodes and intrusive effects, and in this context the ore resulted from the reduction of seawater sulfates. The gold-rich veins interpreted as orogenic lode deposits are confined to localized shear zones in a syn-orogenic diorite.  相似文献   

7.
Gold-rich Fe–Cu–Zn volcanogenic massive sulfide deposits occur within strata of probable Jurassic age on Rapu Rapu Island in Albay Province, Philippines. Massive sulfides at the Ungay Malobago and Hixbar deposits are spatially associated with dacitic volcanic rocks within a highly-deformed sequence of mafic volcanic and quartzofeldspathic sedimentary rocks. The massive sulfide deposits formed at the stratigraphic contact between footwall dacites and hangingwall mafic volcanic and quartzofeldspathic rocks. The deposits and their host strata have undergone regional metamorphism with strong penetrative deformation. Metamorphic mineral assemblages and textural evidence suggest that peak metamorphism was upper-greenschist to lower-amphibolite grade and syn-D1 deformation. Based on the age of regional metamorphism, deformation is inferred to be mid-Tertiary in age. Deformation at Rapu Rapu resulted in reorientation of the strata into a broad antiform with strong shallow-plunging elongation fabrics, overturning of the volcanic sequence that hosts the Ungay Malobago deposit, and complex folding of the mineralized zones. The present highly linear form of the Ungay Malobago deposit is mainly a product of this ductile strain.Immobile element ratios for a given lithology generally remain constant in saprolitic samples, and thus provide an effective identification tool even in strongly weathered rocks. Lithogeochemical data define a bimodal volcanic suite that is comparable to bimodal assemblages that occur in several modern back-arc basins in the southwestern Pacific Ocean, including those behind the Vanuatu and the New Britain arcs. On Rapu Rapu, the dacitic rocks are enriched in light REE and have high Zr/Y ratios, which indicates a calc–alkaline affinity and suggests a mature island-arc setting. The quartzofeldspathic sedimentary rocks are more widespread than the dacites and have notably lower Zr/Y ratios; they may have been derived from erosion of a distant volcanic arc. The mafic volcanic rocks are dominantly low-K arc tholeiites of basaltic to andesitic composition, but with modest enrichment in the light REE; comparable rocks can be found in the Vanuatu and New Britain back-arc basins.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00126-003-0349-0An erratum to this article can be found at Editorial handling: O. Christensen  相似文献   

8.
Polymetallic sulfide-sulfate mineralization enriched in Pb-Ag-As-Sb-Hg occurs in the Bransfield Strait, a late Tertiary-Quaternary marginal basin close to the Antarctic Peninsula. The mineralization is associated with bimodal volcanism and pelagic and volcaniclastic sediment in rifted continental crust. Hydrothermal precipitates have been recovered from two shallow (1,050–1,000 m water depth) submarine volcanoes (Hook Ridge and Three Sisters) in the Central Bransfield Strait. Mineralization at Hook Ridge consists of polymetallic sulfides, massive barite, and pyrite and marcasite crusts in semilithified pelagic and volcaniclastic sediment. Native sulfur commonly infills void space and cements the volcaniclastic sediment. The polymetallic sulfides are dominated by sphalerite with minor galena, enargite, tetrahedrite-tennantite, pyrite, chalcopyrite, and traces of orpiment cemented by barite and opal-A. The presence of enargite at Hook Ridge, the abundance of native sulfur, and the low Fe content of sphalerite indicate a high sulfur activity of the hydrothermal fluids responsible for mineralization. The sulfur isotopic composition of Hook Ridge precipitates documents the complexity of the sulfur sources in this hydrothermal system with variable influence of biological activity and possibly magmatic contributions. Homogenization temperatures and salinities of fluid inclusions in barite and opal-A suggest that boiling may have affected the hydrothermal fluids during their ascent. The discovery of massive barite-silica precipitates at another shallow marine volcano (Three Sisters volcano) attests to the potential for hydrothermal mineralization at other volcanic edifices in the area. The characteristics of the mineralization in the Bransfield Strait with rifting of continental crust, the presence of bimodal volcanism, including highly evolved felsic volcanic rocks, the association with sediments, and the Pb-Ag-As-Sb-Hg enrichment are similar to the setting of massive sulfide deposits in the Okinawa Trough, and distinct from those of sediment-dominated hydrothermal systems such as Escanaba Trough, Middle Valley, and Guaymas Basin. The geological setting of the Bransfield Strait is also broadly similar to that of some of the largest volcanogenic massive sulfide deposits in the ancient record, such as the Iberian Pyrite Belt.Editorial handling: B. Lehmann  相似文献   

9.
黑龙江金厂金矿区火山构造及其控矿特征   总被引:5,自引:0,他引:5  
金厂矿区化类型主要有隐爆角砾岩型、构造蚀变岩型和黄铁矿及多金属硫化物细脉充填型,与其相对应的容矿构造分别为隐爆角砾岩筒,断裂和环状、放射状断裂。其中隐爆角砾岩筒和环状、放射状断裂是印支期花岗岩和燕山中-晚期闪长玢岩岩浆活动时伴生的火山-次火山构造,岩浆期后含矿热液充填其中并发生蚀变交代,形成了隐爆角砾岩型矿体及由黄铁矿-石英脉和多金属硫化物-石英脉充填的环状、放射状矿体。  相似文献   

10.
The Neoproterozoic Bossoroca juvenile Volcanic Arc of southernmost Brazil contains arc-related gold deposits. The Bossoroca gold deposit consists of veins and stockworks of quartz-gold ores with minor pyrite, chalcopyrite, galena and tellurides. Carbonate, chlorite, sericite and tourmaline are the main gangue minerals. The ore shoots are contained in calc-alkaline pyroclastic andesites and dacites with minor basalts and epiclastic rocks of the Campestre Formation. SHRIMP U/Pb investigations of zircon show that the island-arc volcanogenic sequence was formed ca 757 m.y. ago in the early Brasiliano Cycle and metamorphosed into transitional greenschist/amphibolite facies of low-pressure regional metamorphism at ca 700 Ma. Nearby, the post-tectonic São Sepé Granite was intruded into the volcanic arc at ca 550 Ma. The mineralising fluids have been related either to metamorphism or to solutions derived from post-tectonic intrusive granites. Lead isotopic analyses, carried out on galena from the gold ore, on feldspar and total rock from the associated volcanic pile, and also on feldspar and total rock from the São Sepé Granite, indicate that gold mineralisation is related to the volcanogenic rocks, and that the deposit should be considered to be of an epizonal orogenic type.  相似文献   

11.
崔峤 《矿床地质》1984,3(1):77-82
块状硫化物矿床(黄铁矿型矿床、黑矿型矿床)与玄武岩-流纹岩建造的相互关系是由矿石与围岩形成的近似性所决定的,更确切地说,是矿石有规律地产在火山岩一定的岩相中。近年来,火山岩系的岩相分析已成为火山岩地区区域地质调查、块状硫化物矿床普查勘探工作中最重要的方法之一。这是因为,一方面岩相分析和古火山恢复方法,可以对火山体、火山岩系的喷发沉积旋回,以及火山岩的层序进行详细的研究,从而较为客观地总结出  相似文献   

12.
Wetar Island is composed of Neogene volcanic rocks and minor oceanic sediments and forms part of the Inner Banda Arc. The island preserves precious metal-rich volcanogenic massive sulfide and barite deposits, which produced approximately 17 metric tonnes of gold. The polymetallic massive sulfides are dominantly pyrite (locally arsenian), with minor chalcopyrite which are cut by late fractures infilled with covellite, chalcocite, tennantite–tetrahedrite, enargite, bornite and Fe-poor sphalerite. Barite orebodies are developed on the flanks and locally overly the massive sulfides. These orebodies comprise friable barite and minor sulfides, cemented by a series of complex arsenates, oxides, hydroxides and sulfate, with gold present as <10 m free grains. Linear and pipe-like structures comprising barite and iron-oxides beneath the barite deposits are interpreted as feeder structures to the barite mineralization. Hydrothermal alteration around the orebodies is zoned and dominated by illite–kaolinite–smectite assemblages; however, local alunite and pyrophyllite are indicative of late acidic, oxidizing hydrothermal fluids proximal to mineralization. Altered footwall volcanic rocks give an illite K–Ar age of 4.7±0.16 Ma and a 40Ar/39Ar age of 4.93±0.21 Ma. Fluid inclusion data suggest that hydrothermal fluid temperatures were around 250–270°C, showed no evidence of boiling, with a mean salinity of 3.2 wt% equivalent NaCl. The 34S composition of sulfides ranges between +3.3 and +11.7 and suggests a significant contribution of sulfur from the underlying volcanic edifice. The 34S barite data vary between +22.4 and +31.0, close to Miocene seawater sulfate. Whole rock 87Sr/86Sr analyses of unaltered volcanic rocks (0.70748–0.71106) reflect contributions from subducted continental material in their source region. The 87Sr/86Sr barite data (0.7076–0.7088) indicate a dominant Miocene seawater component to the hydrothermal system. The mineral deposits formed on the flanks of a volcanic edifice at depths of ~2 km. Spectacular sulfide mounds showing talus textures are localized onto faults, which provided the main pathways for high-temperature hydrothermal fluids and the development of associated stockworks. The orebodies were covered and preserved by post-mineralization chert, gypsum, Globigerina-bearing limestone, lahars, subaqueous debris flows and pyroclastics rocks.  相似文献   

13.
Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484–464 Ma peri-Laurentian affinity arc–ophiolite complex and a possible broad correlative of the Buchans-Robert’s Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite–carbonate–pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units are petrochemically favorable for Kuroko-type VMS mineralization in bimodal-felsic evolved arc terranes. The scarcity of discovered peri-Laurentian VMS mineralization in the British and Irish Caledonides is due to a combination of minimal exploration, poor-preservation of upper ophiolite sequences, and limited rifting in the Lough Nafooey arc of western Ireland. The geological and geochemical characteristics of the Tyrone Volcanic Group of Northern Ireland and peri-Gondwanan affinity arc/backarc sequences of Ireland and northwest Wales represent the most prospective sequences in the British and Irish Caledonides for VMS mineralization.  相似文献   

14.
块状硫化物矿床的地球化学找矿标志   总被引:6,自引:0,他引:6  
近年来国外发现了许多大型块状硫化物矿床,而我国进展还不大。原因之一是我们对这类矿床的地质特征,成矿条件尤其是找矿标志研究还不够。这是一类成矿物质通过热液作用在海底沉积而成的特殊矿床,故在找矿勘探讨既要研究沉积矿时形成的原生晕,又要研究热液经过围岩时蚀变而产生的次生晕?Mn晕,Tl,Hg,Ba,As和Zn等元素的异常,络合剂元素的富集,微量元素的分布,铅同位素,岩石化学异指数尤其是块状硫化物Cu矿中  相似文献   

15.
卢燕 《地质与勘探》2017,53(6):1039-1050
福建东际金-银矿床产于中生代东坑火山岩盆地西缘的流纹质凝灰岩中,矿区及周边火山-沉积岩系遭受了广泛且强度不等的热液蚀变。本文工作采用红外反射光谱技术在东际矿区三个勘探剖面上对钻孔岩心进行系统性高密度采样分析,结果显示蚀变矿物组合及分带的大框架样式主要受原岩成分控制,具体表现为绢云母化趋向于发育于流纹质火山岩中,而绿泥石化则富集在安山质和英安质火山岩中。在更小的矿区局部空间范围内或单一岩性中,热液作用的物化条件作为次级控制因素决定着特定蚀变矿物的成分变化和蚀变类型的强度差异。从层状硅酸盐组合考虑,东际矿区热液蚀变以绢云母化和绿泥石化为最主要类型,而缺失发育良好的蒙脱石带,金-银矿化赋存在以伊利石为主的绢云母化带中,表明成矿环境属于低硫到中硫之间的浅成热液系统。含矿火山岩的热液蚀变组合和强度变化,以及金-银矿化的似层状特点,均指示成矿时流体是沿着南园组凝灰岩层内侧向流动,而蚀变分带细节显示在凝灰岩层中存在着二至三条流体主通道,金-银矿化则赋存在主通道中。流体主通道的热液蚀变标志是富铝绢云母,其与主通道之外的相对贫铝绢云母在红外光谱特征上反差明显。因此,采用红外光谱技术圈定整体热液蚀变系统的空间构型、解译成矿环境的物化条件及变化、并确定绢云母的铝含量变化用以判断成矿流体主通道位置,可以有效地缩小勘探目标和提高找矿工作的预测性。  相似文献   

16.
The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35?km, which hosts a series of structurally controlled Sb–Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper–Zinc Line where a series of small, ca. 2.97 Ga Cu–Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964?±?7 and 2,970?±?7?Ma, respectively (zircon U–Pb), while pyrite associated with gold mineralization yielded a Pb–Pb age of 2,967?±?48?Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97?Ga. It is, thus, suggested that the major styles of orogenic Au–Sb and the Cu–Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au–Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu–Zn VMS mineralization.  相似文献   

17.
Airborne hyperspectral imagery was used to study the distribution of white mica minerals in Archean (3.2 Ga) submarine hydrothermal systems associated with volcanogenic massive sulfide mineralization in a well-exposed volcanic sequence of the Soansville greenstone belt in the Pilbara, Western Australia. White mica mineral abundance and distribution maps were compared with published hydrothermal alteration maps and differences were interpreted using whole-rock geochemistry and temperature estimates from oxygen isotope geothermometric studies of hydrothermally altered rocks. Three different zones were identified from the hyperspectral imagery: 1) Al-rich white mica zones in the upper parts of the volcanic sequence which are related to recharge of unevolved seawater, 2) Al-poor white mica zones at middle and upper levels of the volcanic sequence predominantly related to K alteration by more-evolved hydrothermal fluids, and 3) high to intermediate Al-content white mica zones in lower levels of the sequence and in cross-cutting zones related to intense alteration by laterally flowing and upwelling evolved fluids. The integrated study of the spatial distribution of hyperspectrally detected white mica minerals together with published maps and rock analyses allowed characterization of the hydrothermal systems and reconstruction of paleo fluid pathways.  相似文献   

18.
The Prince Lyell copper-gold-silver deposit occurs in the late Cambrian Mt Read Volcanics, at Queenstown, Tasmania. Steeply plunging, broadly conformable lenses of disseminated and stringer pyrite-chalcopyrite mineralisation occur in quartz-sericite-chlorite rocks derived from intense alteration of predominantly felsic lavas and volcaniclastic rocks. Middle Devonian deformation has substantially modified primary sulphide textures.Although extensively fractured, pyrite grains in the ore have retained their original pre-deformation internal structure and chemistry which are revealed by etching and electron microprobe analysis. Earliest sulphide mineralisation produced oscillatory zoned, cobalt-rich pyrite (Pyrite I), coeval with chalcopyrite mineralisation. Cobalt-rich pyrite is commonly associated with Cambrian volcanic rocks in western Tasmania and suggests a volcanogenic origin for the ore fluids at Prince Lyell. Pyrite I was corroded by later hydrothermal fluids and reprecipitated as unzoned, trace element-poor pyrite (Pyrite II), commonly as overgrowths on Pyrite I cores. Minor amounts of a second cobalt-rich pyrite (Pyrite III) occurs with Pyrite II in composite pyrite overgrowths. Sulphur isotope ratios from all pyrite generations fall within a small range (3 to 11‰). In situ isotopic analyses showed no consistent δ34S variation between the various pyrite generations, suggesting recycling of sulphur derived from a single Cambrian volcanogenic source.Hematite alteration, derived from oxidised fluids possibly from the adjacent hematitic Owen Conglomerate, occurs in the structural footwall volcanics and the Great Lyell fault zone. Hematite inclusions in Pyrite II and III indicate that these pyrite generations occurred after or during deposition of the conglomerate. It is postulated that Pyrite II and III were deposited during waning volcanism, contemporaneous with Owen Conglomerate sedimentation in the late Cambrian or early Ordovician. The Great Lyell fault would have acted as a growth fault margin between a terrestrial basin, filling rapidly from the east, and the volcanic terrane to the west. The scenario raises the possibility that the concentration of mineral deposits and hematitic alteration along the Great Lyell fault resulted from the subsurface interaction of reduced volcanogenic fluids and oxidised basin waters along the growth fault contact.  相似文献   

19.
Abstract. The Malusok volcanogenic massive sulfide (VMS) deposits comprise two adjacent ore bodies, the Main Malusok and the Malusok Southeast ore bodies, hosted within Cretaceous metamorphic rocks. Owing to the structural and metamor-phic overprinting combined with intense hydrothermal alteration, primary textures of the Malusok volcanic rocks have been obliterated. The stratigraphic correlation of the Main Malusok and the Malusok Southeast ore bodies show that both deposits are essentially confined within a single stratigraphic interval. The lithogeochemical analysis of the Malusok samples shows that constituent lithologies have precursor compositions ranging from sub-alkaline basalts to rhyodacites. Field and mass flux data suggest that the Main Malusok VMS deposits were derived as a consequence of axial hydrothermal activity. The Malusok Southeast ore bodies represent satellite deposits generated by off-axis hydrothermal activities from vents aligned along a NW-SE trend with the Main Malusok zone. This alignment represents an ancient fissure that served as a pathway for the upwelling metalliferous hydrothermal fluids. In searching for lateral extensions of these VMS deposits, this NW-SE alignment should serve as a possible exploration guide.  相似文献   

20.
The Näsliden and Rävliden deposits in the Skellefte field consist of stratiform massive sulfide ores associated with submarine volcanic and clastic rocks. The ores are pretectonic. Consequently, the orebodies are considered to have formed syngenetically with deposition of the host rocks. Banding and interlayering with host sediments are common features. Cu : Zn and Zn : Pb ratios of the ores show stratigraphically and laterally defined trends. Cu : Pb : Zn ratios correspond with those found in other deposits of volcanogenic origin. Nonstratiform breccia Cu mineralizations occur directly under the massive stratiform ores in the footwall rocks where hydrothermal alteration is strongest. Ore formation took place intermittently resulting in clusters of ore systems occurring at slightly different stratigraphical levels within each deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号