首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Carbon sequestration in agroforestry systems   总被引:2,自引:0,他引:2  
《Climate Policy》2013,13(4):367-377
Abstract

Management of trees in agroecosystems such as agroforestry, ethnoforests, and trees outside forests can mitigate green house gas (GHG) emissions under the Kyoto Protocol. Agroforestry systems are a better climate change mitigation option than oceanic, and other terrestrial options because of the secondary environmental benefits such as helping to attain food security and secure land tenure in developing countries, increasing farm income, restoring and maintaining above-ground and below-ground biodiversity, corridors between protected forests, as CH4 sinks, maintaining watershed hydrology, and soil conservation. Agroforestry also mitigates the demand for wood and reduces pressure on natural forests. Promoting woodcarving industry facilitates long-term locking-up of carbon in carved wood and new sequestration through intensified tree growing. By making use of local knowledge, equity, livelihood security, trade and industry, can be supported. There is need to support development of suitable policies, assisted by robust country-wide scientific studies aimed at better understanding the potential of agroforestry and ethnoforestry for climate change mitigation and human well-being.  相似文献   

2.
The buildup of carbon dioxide in the global atmosphere represents one of the principal causes of the greenhouse effect that is overtaking the Earth's climatic systems and that threatens salient sectors of economic development in both the developed and developing worlds. A management response appears to offer substantial scope to counter the buildup of carbon dioxide, even though it has been little addressed in systematic fashion. It is a massive tree-planting programme in the humid tropics. Tree plantations absorb carbon dioxide from the atmosphere, and the humid tropics with year-round warmth and moisture are by far the best place for fast-growing tree plantations. Reforestation on a suitable scale in the humid tropics - accompanied of course by measures to halt deforestation - could eventually serve to sequester carbon in amounts significant for our efforts to counter the greenhouse effect.  相似文献   

3.
Concern over changes in global climate caused by growing atmospheric concentrations of carbon dioxide and other trace gases has increased in recent years as our understanding of atmospheric dynamics and global climate systems has improved. Yet despite a growing understanding of climatic processes, many of the effects of human-induced climatic changes are still poorly understood. Major alterations in regional hydrologic cycles and subsequent changes in regional water availability may be the most important effects of such climatic changes. Unfortunately, these are among the least well-understood impact. Water-balance modeling techniques - modified for assessing climatic impacts - were developed and tested for a major watershed in northern California using climate-change scenarios from both state-of-the-art general circulation models and from a series of hypothetical scenarios. Results of this research suggest strongly that plausible changes in temperature and precipitation caused by increases in atmospheric trace-gas concentrations could have major impacts on both the timing and magnitude of runoff and soil moisture in important agricultural areas. Of particular importance are predicted patterns of summer soil-moisture drying that are consistent across the entire range of tested scenarios. The decreases in summer soil moisture range from 8 to 44%. In addition, consistent changes were observed in the timing of runoff-specifically dramatic increases in winter runoff and decreases in summer runoff. These hydrologic results raise the possibility of major environmental and socioeconomic difficulties and they will have significant implications for future water-resource planning and management.  相似文献   

4.
《Climate Policy》2001,1(1):41-54
One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories’ overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

5.
《Climate Policy》2013,13(1):41-54
Abstract

One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories' overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

6.
There has been a great deal of discussion about global warming from accumulation of anthropogenic greenhouse gases in the atmosphere (Houghton et al., 1990). Relatively less attention has been paid to spatial and/or temporal climatic variations that may be associated with a warmer climate (Rind et al., 1989) or with anthropogenic activities (Schneider, 1994). In this article, we show that an increase in climatic variability may have started. Fourteen isotopic time series of tree rings are presented. These trees were randomly collected from world-wide locations and cover time periods of 120 to over 200 years. The isotopic records show increasing D values that suggest a consistent and progressive warming occurred in the 19th century in all locations where the trees were sampled. The rate of warming is greater at relatively cold locations than at warm locations with two exceptions. The records also suggest greater climatic variations both temporally and spatially in the 20th century than in the 19th century.  相似文献   

7.
The study reports estimates of above ground phytomass carbon pools in Indian forests for 1992 and 2002 using two different methodologies. The first estimate was derived from remote sensing based forest area and crown density estimates, and growing stock data for 1992 and 2002 and the estimated pool size was in the range 2,626–3,071 Tg C (41 to 48 Mg C ha???1) and 2,660–3,180 Tg C (39 to 47 Mg C ha???1) for 1992 and 2002, respectively. The second methodology followed IPCC 2006 guidelines and using an initial 1992 pool of carbon, the carbon pool for 2002 was estimated to be in the range of 2,668–3,112 Tg C (39 to 46 Mg C ha???1), accounting for biomass increment and removals for the period concerned. The estimated total biomass increment was about 458 Tg over the period 1992–2002. Removals from forests include mainly timber and fuel wood, whereby the latter includes large uncertainty as reported extraction is lower than actual consumption. For the purpose of this study, the annual extraction values of 23 million m3 for timber and 126 million m3 for fuel wood were used. Out of the total area, 10 million ha are plantation forests with an average productivity (3.2 Mg ha???1 year???1) that is higher than natural forests, a correction of 408 Tg C for the 10 year period was incorporated in total estimated phytomass carbon pool of Indian forests. This results in an estimate for the net sink of 4 Tg C year???1. Both approaches indicate Indian forests to be sequestering carbon and both the estimates are in agreement with recent studies. A major uncertainty in Indian phytomass carbon pool dynamics is associated with trees outside forests and with soil organic carbon dynamics. Using recent remote-sensing based estimates of tree cover and growing stock outside forests, the estimated phytomass carbon pool for trees outside forests for the year 2002, is 934 Tg C with a national average tree carbon density of 4 Mg C ha???1 in non-forest area, in contrast to an average density of 43 Mg C ha???1 in forests. Future studies will have to consider dynamics in both trees outside forests and soil for total terrestrial carbon dynamics.  相似文献   

8.
Implementing the Kyoto Protocol necessitates precise and practical inventory methods for estimating the carbon reservoir in forests. An analysis of the German state North Rhine-Westphalia forest inventory data showed enormous deviations from the yield tables of Wiedemann (1936, 1942). Specifically the ratio of height/diameter at breast height was up to 30% lower than in the yield tables, which indicated wider annual rings and a lower basic density. Such differences most likely pose consequences for the calculation of the amount of carbon in these forests. In this study the aboveground green weight, moisture and the carbon content of fifteen 46-year old Norway spruces (Picea abies) were measured, and two approaches for calculating the aboveground carbon content of trees were discussed: the common methodology of applying expansion and conversion factors as well as using optimized regression equations. The average expansion factor deviated approximately 1.2% from the yield tables of Grundner and Schwappach (1906). The wood density was 368 kg/m3 and within the European scope of 320–420 kg/m3 (Bosshard, 1984; Hakkila, 1989; Knigge and Schulz, 1966; Trendelenburg and Mayer-Wegelin, 1955). The woody carbon content was found to be 50.42%, which corresponded well with reference values of 50.3% (Bosshard, 1984) and 51.4% (Knigge and Schulz, 1966). However, the average percentage of crown material carbon content was 0.75% higher than in the tree boles. This study demonstrated that the most reliable methodology for calculating aboveground tree carbon was a power regression function, which calculated the growing stock volume, converting it directly into tree carbon content. The results deviated by less than 1.3% (R2 = 0.99) from the measured tree carbon. Using volume expansion factors and factors of basic density and carbon percentage, as in Burschel et al. (1993), the calculated results diverged –3.7% from the measured outcome. The adapted form according to Fang et al. (2001) deviated –1.2% (R2 = 0.63) and the form following Brown and Schroeder (1999) about –2.5% (R2 = 0.61) from the measured carbon of the sample trees. However, coefficients of variation from 12% and 13% for the presented algorithm illustrated that in reality the calculated carbon of single trees could diverge considerably from the model results.  相似文献   

9.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   

10.
Our ability to accurately predict the response of forests in eastern North America to future climatic change is limited by our knowledge of how different tree species respond to climate. When the climatic response of eastern hemlock is modeled across its range, we find that the assumed climatic response used in simulation models is not sufficient to explain how this species is presently responding to climate. This is also the case for red spruce growing in the northern Appalachian Mountains. Consequently, simulations of future change to forests that include eastern hemlock and red spruce may need to be improved. We suspect that similar findings will be made when other tree species are studied in detail using tree-ring analysis. If so, our present understanding of how individual tree species respond to climate may not be adequate for accurately predicting future changes to these forests. Tree-ring analysis can increase our understanding of how climate affects tree growth in eastern North America and, hence, provide the knowledge necessary to produce more accurate predictions.  相似文献   

11.
Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity’s ability to protect our planet’s climate and life-sustaining functions. The substantial body of research we review reveals that forest, water and energy interactions provide the foundations for carbon storage, for cooling terrestrial surfaces and for distributing water resources. Forests and trees must be recognized as prime regulators within the water, energy and carbon cycles. If these functions are ignored, planners will be unable to assess, adapt to or mitigate the impacts of changing land cover and climate. Our call to action targets a reversal of paradigms, from a carbon-centric model to one that treats the hydrologic and climate-cooling effects of trees and forests as the first order of priority. For reasons of sustainability, carbon storage must remain a secondary, though valuable, by-product. The effects of tree cover on climate at local, regional and continental scales offer benefits that demand wider recognition. The forest- and tree-centered research insights we review and analyze provide a knowledge-base for improving plans, policies and actions. Our understanding of how trees and forests influence water, energy and carbon cycles has important implications, both for the structure of planning, management and governance institutions, as well as for how trees and forests might be used to improve sustainability, adaptation and mitigation efforts.  相似文献   

12.
Empirical investigations have indicated that projections of future atmospheric carbon dioxide concentrations of a quality quite adequate for practical questions regarding the environmental threat of anthropogenic carbon dioxide emissions and its relationship to energy use policy could be made with the simple assumption that a constant fraction of these emissions would be retained by the atmosphere. By analysis of the structural behavior of equations describing the transfer of carbon and carbon dioxide between their several reservoirs we have been able to demonstrate that this characteristic can be explained to result from approximately linear behavior and exponentially growing carbon dioxide release rates, combined with fitting of carbon cycle model parameters to the last twenty years of observed atmospheric carbon dioxide growth. These conclusions are independent of the details of carbon cycle model structure for projections up to 100 years into the future as long as the growth in atmospheric carbon dioxide release rates is sufficiently high, of the order of 1.5% per annum or more, as referenced to p re-industrial (steady state) conditions. At low rates of growth, when the longer response times of the carbon cycling system become important, for most energy use projections the resultant CO2 induced climate changes are small and the uncertainties in predicted atmospheric carbon dioxide level are thus not important. A possible exception to this condition occurs for scenarios of future fossil fuel use rates designed to avoid atmospheric CO2 levels exceeding a chosen threshold. In this instance details of carbon cycle model structure could significantly affect conclusions that might be drawn concerning future energy use policies; however, it is possible that such a result stems from inappropriate specification of a criterion for an environmental threat, rather than from inherent inadequacy of current carbon cycle models. Recent carbon cycle model developments postulate transfer processes of carbon into the deep ocean, large carbon storage reservoir at rates much higher than in the models we have analysed. If the existence of such mechanisms is confirmed, and they are found to be sufficiently rapid and large, some of our conclusions regarding the use of the constant fractional retention assumption may have to be modified. Currently at the Gas Research Institute, 8600 West Bryn, Mawr Ave., Chicago, IL 60631, U.S.A.  相似文献   

13.
It has been noted that several distinct modes of glacial oscillation have existed during the past few million years, ranging from low-amplitude, high-frequency oscillations in the early Pliocene, through relatively high amplitude, predominantly near-40 ky period, oscillations in the late Pliocene and early Pleistocene, to the major near-100 ky period oscillations of the late Pleistocene. In addition to other plausible mechanisms suggested previously to explain aspects of this multirhythmic phenomenon, we now illustrate another possible contributor to this type of behavior based on the hypothesis that the slow-response climatic system is bistable and that two kinds of internal instability may be operative along with externally imposed forcing due to earth-orbital (Milankovitch) radiation changes and slow, tectonically-induced changes in atmospheric carbon dioxide. These two instabilities have been discussed previously: one is due to positive feedback in the global carbon cycle leading to near-100 ky free oscillations of the ice sheets, and the other is due to the potential for ice-calving catastrophes associated with bedrock variations that can lead to oscillations of a period near 40 ky, independent of obliquity forcing. Within the framework of a dynamical model containing the possibility for these two instabilities, as well as for stable modes, we show (1) how Milankovitch radiative changes or stochastic forcing influencing ice sheets can induce aperiodic (chaotic) transitions between the possible stable and unstable modes, and more significantly, (2) how progressive, long-term, tectonically-induced, changes in carbon dioxide, acting in concert with earth-orbital radiative variations in high Northern Hemisphere latitudes, can force systematic transitions between the modes. Such systematic changes can result in an ice mass chronology for the past 5 My that is qualitatively similar to the observed record of global ice mass. In essence, we have constructed a minimum dynamical model of the late Cenozoic climatic changes, containing what are believed to be the main physical factors determining these changes: ice mass, bedrock depression, atmospheric carbon dioxide concentration, deep ocean thermohaline state, Milankovitch radiation forcing, and slow tectonically-induced carbon dioxide forcing. This model forms the basis for a coherent theory for the complex climatic events of this long period.  相似文献   

14.
European forests are facing multiple natural and anthropogenic pressures that are expected to become more severe in the next decades. Tree diversity is projected to decline in many areas across the continent. How this will affect the provision of forest services remains an open question, whose answer depends, among others, on the practical and theoretical challenges of incorporating assisted migration into climate adaptation strategies. Here, we tackle the issue by combining a large dataset of tree species occurrences, future climatic projections, and data on tree functional traits and tree-specific forest services into a novel modelling framework. We estimate that, by the end of the century and under a natural dispersal scenario, the provision of forest services would decrease on average by 15% in Europe (for RCP 4.5; 23% for RCP 8.5), and up to 52% (70% for RCP 8.5) in the Mediterranean. To explore if and how management could reduce the projected losses, we simulated a suite of alternative assisted migration strategies aimed at identifying, for each locality, the tree species communities offering the best compromise in terms of resilience to climate change and delivery of specific combinations of ecosystem services. Such strategies could reduce losses of services by 10% (15%) on average in Europe, and even increase service availability in the Alpine and Boreal regions but not in the Mediterranean, where losses will remain as high as 33% (54% for RCP 8.5). Our findings highlight how science-driven management strategies could be vital to reduce an otherwise dramatic, European-wide decline of forest services. Our results are qualitatively robust to different assumptions on future carbon emissions and related climate trajectories. That is, our simulated assisted migration strategies identify similar tree species communities under different pathways (RCP 4.5 vs RCP 8.5). This makes our approach a powerful tool for forest management, as it generates advice that is valid regardless of whether, and to what extent, human society will steer away from business-as-usual emission trajectories.  相似文献   

15.
Forests contain more than twice as much carbon as the atmosphere and process through their metabolism about 1/7 of the atmospheric carbon annually. Deforestation currently is adding carbon to the atmosphere as carbon dioxide at an increasing rate and causing the impoverishment of soils over large areas in the tropics. But deforestation is also occurring in the temperate and boreal forests. In most cases deforestation is the result of national policies. It proceeds in the United States in response to economic pressures and political weakness, even corruption.The re-establishment of forests has the potential for contributing to the stabilization of the composition of the atmosphere by removing carbon as carbon dioxide from the atmosphere and storing it on land for an indefinite period. Such a transition in land use is difficult to imagine in a world in which the human population is expanding continuously and impoverished land is accumulating.Global interests in management of forests introduce a new element into international relations. Progress in effecting the shifts in controls on land use required to control deforestation in the interests of stabilizing climate and preserving biotic resources will depend on clear definition of the details of the problem by the scientific community and a further definition of how to proceed.  相似文献   

16.
Effective policies for dealing with anticipated climatic changes must reflect the two-way interactions between climate, forests and society. Considerable analysis has focused on one aspect of forests - timber production - at a local and regional scale, but no fully integrated global studies have been conducted. The appropriate ecological and economic models appear to be available to do so. Nontimber aspects of forests dominate the social values provided by many forests, especially remote or unmanaged lands where the impacts of climatic change are apt to be most significant. Policy questions related to these issues and lands are much less well understood. Policy options related to afforestation are well studied, but other ways the forest sector can help ameliorate climatic change merit more extensive analysis. Promising possibilities include carbon taxes to influence the management of extant forests, and materials policies to lengthen the life of wood products or to encourage the substitution of CO2-fixing wood products for ones manufactured from less benign materials.  相似文献   

17.
18.
The likely effects on two tree species of a range of scenarios of climatic and atmospheric change expected by the year 2050 are investigated using a climatic mapping program, a simple simulation model and a process-based simulation model. Styrax tonkinensis is a native species for which relatively little information is available. Acacia mangium is an introduced species, which is important for pulp production in several other countries, and for which there is considerable information for growth and utilization. A climatic mapping program is used to show areas which may be suitable for these species under present and predicted conditions. Two simulation models are used to investigate likely effects on productivity of the two species for a range of climatic change scenarios for Hanoi and Ho Chi Minh City. The estimated changes in production are predicted to be relatively small, though uncertainities associated with the simulations are quite high. However, the models highlight areas where more data are needed and also suggest some key regions in Vietnam which would be worth monitoring to detect early signs of the effects of climatic and atmospheric change.  相似文献   

19.
An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.  相似文献   

20.
Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is currently water-limited, growth is likely to decline due to increased summer water deficit. Second, we use existing analyses of climatic controls on tree species biogeography to demonstrate that by the mid twenty-first century, climate will be less suitable for key species in some areas of Washington. Third, we examine the relationships between climate and the area burned by fire and project climatically driven regional and sub-regional increases in area burned. Fourth, we suggest that climatic change influences mountain pine beetle (MPB) outbreaks by increasing host-tree vulnerability and by shifting the region of climate suitability upward in elevation. The increased rates of disturbance by fire and mountain pine beetle are likely to be more significant agents of changes in forests in the twenty-first century than species turnover or declines in productivity, suggesting that understanding future disturbance regimes is critical for successful adaptation to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号