首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four assemblages from calcic pelitic schists from South Strafford,Vermont, have been studied in detail to determine the relationshipbetween reaction history and compositional zoning of minerals.The lowest-grade assemblage is garnet + biotite + chlorite +plagioclase + epidote + quartz + muscovite + graphite + fluid.Along a path of isobaric heating, the net reaction is Chl +Ms + Ep + Gr = Grt + Bt + Pl + fluid. Garnet grows with decreasingFe/(Fe + Mg) and XSpa, (from 0•2 to 0•05), XGra staysnearly constant between 0•20 and 0•25, and plagioclasegrows with XAn increasing from peristerite to 0•2–0•5. The subsequent evolution depends on whether chlorite or epidotereacts out first. If chlorite is removed from the assemblagefirst, the net reaction along an isobaric heating path becomesGrt + Ms + Ep + Qtz + Gr = Bt + Pl + fluid. XAn of plagioclaseincreases to 0•20–0•70, depending on the bulk-rockcomposition and changes in pressure and temperature. If epidoteis removed first, the assemblage becomes a simple pelite andthe net reaction becomes Chl + Pl + Ms + Qtz = Grt + Bt + H2O.Plagioclase is consumed to provide Ca for growing garnet, andXAn, Fe/(Fe + Mg) of garnet, XGra, and XSpa all decrease. Afterboth chlorite and epidote are removed, continued heating upto the metamorphic peak of {small tilde}600C produces littleprogress of the reaction Grt + Ms = Bt + Pl; and XAn increases. The four assemblages have been numerically modeled using theGibbs method starting with measured compositions. The modelssuccessfully predict the observed compositional zoning and trendsof mineral growth and consumption along the computed P–Tpaths. The models also predict the compositional mineral zoningthat would have resulted from other P–T paths. * Present address: Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487  相似文献   

2.
Single-phase 2M1 muscovite-paragonite crystalline solutionsin the range 0?00–0?10 and 0?70–1?00 Xms have beensynthesized by hydrothermal treatment of gels of appropriatecompositions at 600–700?C, and 7 to 18 kb PH2O. The molarvolumes of these micas may be expressed as V(J/b?mol) = 13?1845+1?463Xms+0?0160 Xms2–0?1679 Xms3 (?0?005), which translateto a substantial positive excess molar volume of mixing. Na-K ion exchange experiments between presynthesized 2M1 micacrystalline solutions and 2 molal aqueous (Na,K)Cl fluids failedto proceed to completion despite 98 day runs at 500–600?C,6 kb Ptotal. Results of analogous exchange experiments provedencouraging however, when a much finer-grained 1M mica was usedas starting material. Applying the tie line rotation technique,reversal of ion exchange experiments could be achieved in the2-phase fields, not, however, in the 3-phase field of the ms-pg-NaCl-KClreciprocal ternary. Using gels as starting material, reversalexperiments were eventually successful both in the 2-phase andthe 3-phase fields; the results of reversal experiments withinthe two-phase fields being identical to those obtained earlierusing 1M micas. Four isobaric-isothermal sections through the ms-pg-NaCl-KClternary were reversibly determined at 450?C/5 kb, 550?C/6 kb,550?C/15 kb, and 620?C/7 kb. At 450?C, the coexisting mica compositionsin the 3-phase field (2 micas plus 1 fluid) are 0?10 and 0?77Xms, at 550?C they are 0?10 and 0?60 Xms, and finally, at 620?Cthese are 0?12 and 0?51 Xms. To the extent that internal equilibriumwas accomplished between the coexisting micas, these data wouldindicate a wide solvus at 450?C, narrowing gradually with increasingtemperature to 620?C. The critical temperature will be wellin excess of 620?C, although the mica at the critical conditionwill prove to be metastable with respect to the assemblage alkalifeldspars+corundum+H2O. The companion paper by Chatterjee & Flux (1986) presentsa thermodynamic analysis of the above experimental data.  相似文献   

3.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

4.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

5.
Reversed Na-K exchange data between mica and a 2 molal aqueous(Na,K)Cl fluid (Flux & Chatterjee, 1986) have been employedto model the thermodynamic mixing behaviour of muscovite-paragonitecrystalline solutions on the basis of the Redlich-Kister equation.For these binary micas, Gexm may be expressed as where A=11222+1.389 T+0.2359 P, B=–1134+6.806 T–0.0840 P, and C=–7305+9.043 T, with T in K, P in b, Gexm, A, B, and C in joules/mol. Gmex is well constrained between 450 and 620?C, and may be extrapolatedbeyond that range with caution. The calculated solvi are skewedtoward the paragonite end member. In the range up to 15 kb,the critical temperature, Tc and the critical composition, Xcmay be expressed as a function of P by the relations: and with P indicated in bars. Calculated phase relations of muscovite-paragonite crystallinesolutions have been depicted in terms of the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.These data may be applied to appropriate assemblages involvingmica, alkali feldspar, an Al2 polymorph, and quartz to estimateP, T and aH2O conditions of their equilibration. In principle,the muscovite limb of the solvus may be used to obtain geothermometricdata for coexisting muscovite-paragonite pairs, provided theequilibrium pressure is independently known. However, such applicationmust be restricted for the present to micas on the ideal muscovite-paragonitejoin. Mica-alkali feldspar-Al2SiO5-quartz or mica-plagioclase-Al2SiO5-quartzassemblages may be used to deduce aH2O in the coexisting fluid,if P, and T of equilibrium are independently known. Examplesof such geological applications are given.  相似文献   

6.
The inferred crystallization history of the troctolitic LowerZone of the Kiglapait Intrusion in Labrador is tested by meltingmineral mixtures from the intrusion, made to yield the observedcrystal compositions on the cotectic trace of liquid, plagioclase,and olivine. Melting experiments were made in a piston-cylinderapparatus, using graphite capsules at 5 kbar. Lower Zone assemblagescrystallized from 1245°C, 5% normative augite in the liquid,to 1203°C, 24% normative augite in the liquid at saturationwith augite crystals. This transit is consistent with modaldata and the large volume of the Lower Zone. The 1245°Ccotectic composition matches the average Inner Border Zone composition.Quenched troctolitic liquid from the Upper Border Zone, andothers from nearby Newark Island, plot on or near our experimentalcotectic, supporting a common fractionation history. Olivine–plagioclaseintergrowths from cotectic troctolitic melt show mosaic texturesreflecting the differing barriers to nucleation of these twophases. The linear partitioning of XAb in plagioclase–meltyields an intercept constant KD = 0·524 for these maficmelts. Observed subsolidus exchange of Ca between plagioclaseand olivine elucidates the loss of Ca from plutonic olivines.The bulk composition of the intrusion is revised downward inFo and An. KEY WORDS: experimental; olivine; plagioclase; Kiglapait; partitioningAbbreviations: AP, MT, IL, OR, AB, AN, DI, HY, OL, FO, NE, Q, FSP, AUG: (Oxygen) Normative components; Ap, Aug, Ilm, Ol, Pl: Phases; Ab, An, Di, Fa, Fo, Or, Wo: Phase components; also ternary endmembers; BSE: Back-scattered electron; CaTs: Calcium Tschermak's component, CaAlAlSiO6; D: Partition coefficient; f: Fugacity; FL: Fraction of the system present as liquid = 1 – (PCS/100); FMQ: Fayalite = magnetite + quartz buffer; IBZ: Inner Border Zone; IW: Iron = wüstite buffer; kbar: kilobar, 108 pascal; KD: Exchange coefficient; KI: Kiglapait Intrusion; L: Liquid phase; LLD: Liquid line of descent; Ma: Mega-annum, age; Myr: Mega-year, time; OLHY: Normative OL + HY; OLRAT: The ratio OLHY/(OLHY + AUG); P: Pressure; P: Phosphorus; PCS: Percent solidified (volume); SMAR: South Margin average composition; T: Temperature, °C; UBZ: Upper Border Zone; WM: Wüstite = magnetite buffer; Wo: Wollastonite component of pyroxene; X: Mole fraction; XMg: Molar ratio Mg/(Mg + Fe2+); , XMg(0): Initial XMg before MT is formed in the norm calculation; X: Coordinate, horizontal axis; Y: Coordinate, vertical axis  相似文献   

7.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

8.
Kornerupine and associated minerals in 31 samples of high-graderocks relatively rich in Al and Mg were analysed by wet chemistry,ion microprobe mass analyser, electron microprobe and X-raypowder diffraction. For 11 samples of kornerupine and threesamples of biotite (F only) analysed by both wet chemical andion microprobe methods, the best agreement was obtained forB2O3, whereas the ion microprobe Li2O values were systematicallysomewhat higher than the wet chemical values. The wet chemicalmethods give Li2O=0–0?19 wt.%; BeO=0–0?032 wt.%;B2O3=0–4?01 wt.%; and F=0?07–0?77 wt.% in kornerupine,whereas ion microprobe analyses on other kornerupines give valuesup to 0?35 wt.% Li2O, O066 wt.% BeO, and 4?72 wt.% B2O3. Thesum B+Al+Fe3++Cr is close to 6?9 atoms per 22 (O, OH, F) or21?5 (O) in kornerupine. In general, Li/Fe ratios decrease as follows: kornerupine ?sapphirinebiotite> Crd (Na<0?03 per 18 oxygens)>tourmaline, garnet,orthopyroxene. However, for cordierite with Na>004, Li/Fedecreases as follows: cordierite>kornerupine. Sapphirineand sillimanite are the only associated minerals to incorporatesignificant boron (0?1–0?85 wt.% B2O3) and then only whenthe single site for B in kornerupine is approaching capacity.Sillimanite B2O3 contents increase regularly with kornerupineF. Fractionation of fluorine increases as follows: kornerupine<biotite<tourmaline,and Kkrn-BtD=(F/OH)Krn/(F/(OH)Bt (assuming ideal anion composition)increases with biotite Ti. Kornerupine B2O3 content is a measureof B2O3 activity in associated metamorphic fluid, whereas sillimaniteB2O3 content increases with temperature, exceeding 0?4 wt.%whenT=900?C at very low water activities. New data on 11 kornerupines and literature data indicate thatthe unit cell parameters a, c, and V decrease with increasingB content and b, c, and V increase with increasing Fe3+ content.In Fe3+-poor kornerupines, b increases with Mg and with (Mg+ Fe2+) but the effect of Mg on b via the substitution VIMg+IVSi=VIAl+IVAloverwhelms the effect of Fe2+=Mg substitution.  相似文献   

9.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

10.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

11.
Experiments in the quartz-saturated part of the system KFMASHunder fO2 conditions of the haematite–magnetite bufferand using bulk compositions with XMg of 0·81, 0·72,0·53 define the stability limits of several mineral assemblageswithin the PT field 9–12 kbar, 850–1100°C.The stability limits of the mineral assemblages orthopyroxene+ spinel + cordierite ± sapphirine, orthopyroxene + garnet+ sapphirine, sapphirine + cordierite + orthopyroxene and garnet+ orthopyroxene + spinel have been delineated on the basis ofPT and T–X pseudosections. Sapphirine did not appearin the bulk composition of XMg = 0·53. A partial petrogeneticgrid applicable to high Mg–Al granulites metamorphosedat high fO2, developed in our earlier work, was extended tohigher pressures. The experimental results were successfullyapplied to several high-grade terranes to estimate PTconditions and retrograde PT trajectories. KEY WORDS: KFMASH equilibria; experimental petrogenetic grid at high fO2  相似文献   

12.
We have determined the Fe-Mg fractionation between coexistinggarnet and orthopyroxene at 20–45 kb, 975–1400?C,and the effect of iron on alumina solubility in orthopyroxeneat 25 kb, 1200?C, and 20 kb, 975?C in the FMAS system. The equilibriumcompositions were constrained by experiments with crystallinestarting mixtures of garnet and orthopyroxene of known initialcompositions in graphite capsules. All iron was assumed to beFe2+. A mixture of PbO with about 55 mol per cent PbF2 provedvery effective as a flux. The experimental results do not suggest any significant dependenceof KD on Fe/Mg ratio at T 1000?C. The lnKD vs. l/T data havebeen treated in terms of both linear and non-linear thermodynamicfunctional forms, and combined with the garnet mixing modelof Ganguly & Saxena (1984) to develop geothermometric expressionsrelating temperature to KD and Ca and Mn concentrations in garnet. The effect of Fe is similar to that of Ca and Cr3+ in reducingthe alumina solubility in orthopyroxene in equilibrium withgarnet relative to that in the MAS system. Thus, the directapplication of the alumina solubility data in the MAS systemto natural assemblages could lead to significant overestimationof pressure, probably by about 5 kb for the relatively commongarnetlherzolites with about 25 mol per cent Ca+Fe2+ in garnetand about 1 wt. per cent Al2O3 in orthopyroxene.  相似文献   

13.
FERRY  JOHN M. 《Journal of Petrology》1995,36(4):1039-1053
Contact-mctamorphic assemblages in ophicarbonate from the Bergellaureole correspond either to model isobaric invariant T-XCO2points [Atg-Cal-Di-Tr-Fo (6 samples) and Atg-Cal-Tr-Fo-Dol (2)]or to isobaric univariant T-XCO2, curves [Tr-Cal-Di-Atg (18),Tr-Dol-Atg-Cal (1), Atg-Cal-Fo-Di (1), and Atg-Cal-Tr-Fo (1)].Calcite-dolomite thermometry and mineral-fluid equilibria inthe invariant assemblages record T=440–540C at P=3•5kbar. Equilibrium metamorphic fluids were very H2O rich withX CO2,=0•001–0•027. In the invariant assemblagesTr + Fo were produced by prograde decarbonation-dehydrationreactions. In contrast, measured modes and reaction texturesin samples with univariant assemblages indicate thai Tr wasproduced by carbonation reactions. The apparent paradox of simultaneousdecarbonation reactions in the model isobaric invariant assemblagesand carbonation reactions in univariant assemblages is resolvedby local mineral-fluid equilibrium and fluid flow through ophicarbohatesin the direction of decreasing temperature as the aureole heated.Time-integrated flux (q) was computed from measured reactionprogress in 28 samples for models of both horizontal and verticaldown-temperature flow. Results are similar, with q decreasingrapidly from (0•2–5•1) 105 cm3 fluid/cm2 rock1•3–1•7 km from the intrusion to 0–0•6105cm3/cm2 at 1•8–4•0 km. The decrease in q ismore consistent with vertical than horizontal flow. Variationsin time-integrated flux of more than an order of magnitude arerecorded by samples from the same outcrop. The absence of carbonatein adjacent metaperidotite indicates that flow was confinedto the ophicarbonate. Channelized, spatially heterogeneous,vertical flow can be explained by the brecciation and strongvertical foliation of the ophicarbonate relative to surroundingmassive metaperidotite. Generation of metamorphicfluids by decarbonation-dehydrationreactions within the ophicarbonates explains larger averageflux 1–2 km from the intrusion compared with more distalpoints. KEY WORDS: Bergell; contact metamorphism; fluid flow; ophicarbonate *Telephone: (410) 516-8121. Fax: (410) 516-7933  相似文献   

14.
A hybrid pyroxene-bearing Weinsberg type granitoid of the SouthBohemian batholith (Austria) consists of two independent mineralassemblages that were formed during two different magmatic events.The older, inherited assemblage forms unevenly distributed millimetre-sizedmulti-grain patches of quartz + mesoperthitic alkali feldspar+ andesine/bytownite + clinopyroxene (XMg = 0·50–0·54)+ orthopyroxene (XMg = 0·35–0·42) ±ilmenite ± accessories. It is interpreted to representremnants of a mangeritic igneous rock with a superimposed granulite-faciesre-equilibration texture characterized by unzoned pyroxenesand plagioclase. The enclosing younger assemblage with alkalifeldspar + oligoclase/andesine + quartz + biotite ± accessoriescrystallized from a biotite-bearing granitic melt with feldsparsexhibiting typical magmatic zoning. Coexisting with the inheritedassemblage are zircons with a characteristic typology (S23 toD, mean J4). Zircons belonging to the granitic assemblage, onthe other hand, show a distinctly different typology (L2 toS5, mean L4) or are anhedral. A Cambrian age of formation andsubsequent re-equilibration of the inherited assemblage is inferredfrom a mean U/Pb and 207Pb/206Pb evaporation age of 523 ±5 Ma for the J4 zircons. Granitic L4 zircons show a mean 207Pb/206Pbevaporation age of 355 ± 9 Ma, interpreted as the ageof zircon growth during a Carboniferous partial melting eventin the lower crust. Granite emplacement at 345 ± 5 Mais inferred from U/Pb analysis of the anhedral zircon population.The comparably low radiogenic common Pb isotope compositionof megacrystic alkali feldspars suggests that at least somedomains of these crystals are inherited from the older, pyroxene-bearingmineral assemblage. Rb/Sr whole-rock dating is thus severelyjeopardized by the presence of the inherited alkali feldsparcrystals, leading to widely scattering data points and errorchronages of no geological significance. KEY WORDS: Austria; Bohemian Massif; geochronology; granites; Pb–Sr isotopes  相似文献   

15.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

16.
A new thermobarometer, based on the equilibrium: has been calibrated with experiments carried out in the piston-cylinderapparatus. Reversed equilibria were obtained using well-calibrated2.54 cm NaCl furnace assemblies and Ag80Pd20capsules with fO2bufferedat or near iron-wustite. The equilibrium is located between5.2–5.4, 6.6–6.8, and 8.6–8.8 kb at 880, 940,and 1020?C, respectively, and at 5.2 and 8.8 kb between 865–880and 1020–1030?C, respectively. X-ray refinement data indicate that the hercynite (a = 8.15546?) has approximately 18 per cent inverse character. M?ssbauerspectra reveal that 4 mol per cent of the Fe is ferric (2 percent magnetite component). Broad Mossbauer lines and a Fe2+energy level splitting of 3.7 kJ mol–1 calculated fromthe Mossbauer spectra are consistent with the X-ray determineddegree of inversion, although no separate octahedral Fe2+ spectraldoublet is resolved. Calibration of this equation allows calculation of the equilibrium: Thermobarometers based on the above equilibria are widely applicablein granulite fades rocks and yield pressure/temperature datathat are consistent with other well-calibrated barometers andthermometers.  相似文献   

17.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

18.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

19.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

20.
Carbonate scapolite is a potentially powerful mineral for calculatingCO2 activities in non-calcareous rocks, but an analysis of thethermodynamics and phase equilibria of carbonate scapolite isfirst necessary. This includes an evaluation of Al-Si disorderin meionite, as this has the greatest effect on derived phaserelations. Available experimental data on meionite stability,X-ray diffraction refinements and nuclear magnetic resonancespectra for calcic scapolite do not uniquely constrain the Al-Siordering state of synthetic meionite. However, the data aremost consistent with a high degree of Al-Si disorder and inconsistentwith long-range Al-Si order. An internally consistent thermodynamicdata set was derived and used to calculate P-T and T-XCO2 equilibriainvolving meionite in the CaO-Al2O3-SiO2-CO2-H2O (CASCH) system.The effect of Al-Si disorder is illustrated by calculating thephase equilibria using an ordered, an arbitrary intermediatedisordered, and a completely Al-Si disordered standard statefor meionite. The Gibbs free energy of meionite was calculatedfrom reversals (at 790–815?C, 2–15 kb) on the reaction 3 Anorthite +Calcite =Meionite The fG?m, 298 for each of the standard states is –13 146?6,–13128?8, and –130930kJ/mol, respectively. Becauseof the steep slope of reaction (1) and limited temperature rangeover which it breaks down, meionite used in the experimentsto constrain reaction (1) must possess a limited range of Al-Sidisorder. The P-T slope of reaction (1) increases, and the slopeof meionite decarbonation equilibria changes from positive tonegative in T-XCO2 and P-T space, as a function of increasingAl-Si disorder. Meionite has a wide stability field at highT in T-X space at 5 and 10 kb (PTotal=PFluid), being stableto XCO2=0?06. Meionite alone breaks down to undersaturated gehleniteand/or corundum-bearing assemblages at 5 kb, and to clinozoisiteat 10 kb. The effect of solid solutions on the T-X stabilityof meionite is similar to that of increasing pressure, stabilizingmeionite to lower temperature. Variable Al-Si disorder doesnot significantly affect the upper limit of meionite stabilityin T-XCO2 space. Activity-composition relations for meionitein carbonate scapolite were calculated relative to reaction(1) from data on natural scapolite-plagioclase-calcite assemblages.The extent of departure from ideality varies as a function ofAl-Si disorder. Negative deviations from ideality are indicatedfor natural scapolite solid solutions at T<750?C, based ona disordered Al-Si standard state for meionite. This is likelyto reflect a more ordered Al-Si distribution in natural scapolitescompared with the synthetic endmember standard state. Present address: Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794-2100  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号