首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations of the zodiacal dust cloud give evidence for a significant contribution of asteroidal dust to the interplanetary dust cloud, a result which can now be compared to measurements of the ULYSSES dust detector during its passage of the asteroid belt. Especially we discuss the ULYSSES data with respect to the IRAS dust bands and consider geometric selection effects for the detector. From calculations of radiation pressure forces, we conclude that particles in the IRAS dust bands with massesm≥ 10−12g will stay in bound orbits after their release from asteroid fragmentation. This is already in the mass range (10−16–10−7g) of particles detectable with the dust detector onboard ULYSSES. The absence of these particles in the ULYSSES data cannot be explained exclusively in terms of their small detection probability. Thus we conclude that the size distribution of particles in the IRAS dust bands most probably cannot be continued to the submicrometer range. Concerning the global structure of the inner zodiacal cloud (i.e., about solar distancer< 3.5 AU) the ULYSSES data are not inconsistent with present models. Recent estimates of the total mass of the interplanetary cloud require a dust production rate of about 1014g/year of which a significant amount is assumed to result from the asteroids. Our estimate for the production of dust particles in an IRAS dust band, based on the assumption that the dust band results from a single destruction of an asteroid of 100 km size, yields a production rate of 1010g/year. Other models of the IRAS dust bands suggest production rates up to 1012g/year and also cannot provide a significant source of the dust cloud.  相似文献   

2.
The problem of the stability of the zodiacal cloud is scrutinized. The central idea of the paper sticks in the theoretical treatment of the action of the solar electromagnetic radiation on small interplanetary dust particles (IDPs). It is suggested that the virtual problem of the (in-)stability of the zodiacal cloud originated from the physically incorrect application of the Poynting-Robertson effect on IDPs. Real particles are not of spherical shape and so the braking acceleration is not proportional to -v/c. Depending on the shape (and other optical properties) of the particle, also spiralling outward from the Sun may occur.  相似文献   

3.
We have performed the calculations of the orbital evolution of dust particles from volcanic glass (p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting–Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0–7.6 solar radii for standard particles of the zodiacal cloud and 9.1–9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.  相似文献   

4.
The simulated Doppler shifts of the solar Mg I Fraunhofer line produced by scattering on the solar light by asteroidal, cometary, and trans-neptunian dust particles are compared with the shifts obtained by Wisconsin H-Alpha Mapper (WHAM) spectrometer. The simulated spectra are based on the results of integrations of the orbital evolution of particles under the gravitational influence of planets, the Poynting-Robertson drag, radiation pressure, and solar wind drag. Our results demonstrate that the differences in the line centroid position in the solar elongation and in the line width averaged over the elongations for different sizes of particles are usually less than those for different sources of dust. The deviation of the derived spectral parameters for various sources of dust used in the model reached maximum at the elongation (measured eastward from the Sun) between 90° and 120°. For the future zodiacal light Doppler shifts measurements, it is important to pay a particular attention to observing at this elongation range. At the elongations of the fields observed by WHAM, the model-predicted Doppler shifts were close to each other for several scattering functions considered. Therefore the main conclusions of our paper do not depend on a scattering function and mass distribution of particles if they are reasonable. A comparison of the dependencies of the Doppler shifts on solar elongation and the mean width of the Mg I line modeled for different sources of dust with those obtained from the WHAM observations shows that the fraction of cometary particles in zodiacal dust is significant and can be dominant. Cometary particles originating inside Jupiter's orbit and particles originating beyond Jupiter's orbit (including trans-neptunian dust particles) can contribute to zodiacal dust about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. The fraction of asteroidal dust is estimated to be ∼0.3-0.5. The mean eccentricities of zodiacal particles located at 1-2 AU from the Sun that better fit the WHAM observations are between 0.2 and 0.5, with a more probable value of about 0.3.  相似文献   

5.
The space density of life-bearing primordial planets in the solar vicinity may amount to ~8.1×104?pc?3 giving total of ~1014 throughout the entire galactic disk. Initially dominated by H2 these planets are stripped of their hydrogen mantles when the ambient radiation temperature exceeds 3?K as they fall from the galactic halo to the mid-plane of the galaxy. The zodiacal cloud in our solar system encounters a primordial planet once every 26 My (on our estimate) thus intercepting an average mass of 103 tonnes of interplanetary dust on each occasion. If the dust included microbial material that originated on Earth and was scattered via impacts or cometary sublimation into the zodiacal cloud, this process offers a way by which evolved genes from Earth life could become dispersed through the galaxy.  相似文献   

6.
The problem of electromagnetic perturbations of charged dust particle orbits in interplanetary space has been re-examined in the light of our better understanding of the large scale spatial and temporal interplanetary plasma and field topology. Using both analytical and numerical solutions for particle propagation it was shown that: (1) stochastic variations induced by electromagnetic forces are unimportant for the zodiacal dust cloud except for the lowest masses, (2) systemetic variations in orbit inclinations are unimportant if orbital radii are larger than 10 a.u. This is due to the solar cycle variation in magnetic polarity which tends to cancel out systematic effects, (3) systematic variations in orbital parameters (inclination, longitude of ascending node, longitude of perihel) induced by electromagnetic forces inside 1 a.u. tend to shift the plane of symmetry of the zodiacal dust cloud somewhat towards the solar magnetic equatorial plane, (4) inside 0.3 a.u. there is a possibility that dust particles may enter a region of “magnetically resonant” orbits for some time. Changes in orbit parameters are then correspondingly enhanced, (5) the observed similarity of the plane of symmetry of zodiacal light with the solar equatorial plane may be the effect of the interaction of charged interplanetary dust particles with the interplanetary magnetic field. Numerical orbit calculation of dust particles show that one of the results of this interaction is the rotation of the orbit plane about the solar rotational axis.  相似文献   

7.
The most frequent incorrect statements concerning derivations of the action of the solar electromagnetic radiation on the motion of interplanetary dust particles are presented. All of them are discussed and it is also explained why are they physically incorrect. It is stressed that astronomers must discuss the physics of this effect for the purpose of familiarity with it, and, may be, for better understanding of the (in-)stability of the zodiacal cloud.  相似文献   

8.
Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈106 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of the zodiacal cloud at large latitudes suggests that it is mainly produced by particles with higher inclinations than what would be expected for asteroidal particles produced by sources in the main belt. From these results, we infer that asteroidal dust represents a smaller fraction of the zodiacal cloud than previously thought. We estimate that the total mass accreted by the Earth in Karin and Veritas particles with diameters 20-400 μm is ≈15,000-20,000 tons per year (assuming 2 g cm−3 particles density). This is ≈30-50% of the terrestrial accretion rate of cosmic material measured by the Long Duration Exposure Facility. We hypothesize that up to ≈50% of our collected interplanetary dust particles and micrometeorites may be made up of particle species from the Veritas and Karin families. The Karin family IDPs should be about as abundant as Veritas family IDPs though this ratio may change if the contribution of third, near-ecliptic source is significant. Other sources of dust and/or large impact speeds must be invoked to explain the remaining ≈50-70%. The disproportional contribution of Karin/Veritas particles to the zodiacal cloud (only 5-9%) and to the terrestrial accretion rate (30-50%) suggests that the effects of gravitational focusing by the Earth enhance the accretion rate of Karin/Veritas particles relative to those in the background zodiacal cloud. From this result and from the latitudinal brightness of the zodiacal cloud, we infer that the zodiacal cloud emission may be dominated by high-speed cometary particles, while the terrestrial impactor flux contains a major contribution from asteroidal sources. Collisions and Poynting-Robertson drift produce the size-frequency distribution (SFD) of Karin and Veritas particles that becomes increasingly steeper closer to the Sun. At 1 AU, the SFD is relatively shallow for small particle diameters D (differential slope exponent of particles with D?100 μm is ≈2.2-2.5) and steep for D?100 μm. Most of the mass at 1 AU, as well as most of the cross-sectional area, is contributed by particles with D≈100-200 μm. Similar result has been found previously for the SFD of the zodiacal cloud particles at 1 AU. The fact that the SFD of Karin/Veritas particles is similar to that of the zodiacal cloud suggests that similar processes shaped these particle populations. We estimate that there are ≈5×1024 Karin and ≈1025 Veritas family particles with D>30 μm in the Solar System today. The IRAS observation of the dust bands may be satisfactorily modeled using ‘averaged’ SFDs that are constant with semimajor axis. These SFDs are best described by a broken power-law function with differential power index α≈2.1-2.4 for D?100 μm and by α?3.5 for 100 μm?D?1 cm. The total cross-sectional surface area of Veritas particles is a factor of ≈2 larger than the surface area of the particles producing the inner dust bands. The total volumes in Karin and Veritas family particles with 1 μm<D<1 cm correspond to D=11 km and D=14 km asteroids with equivalent masses ≈1.5×1018 g and ≈3.0×1018 g, respectively (assuming 2 g cm−3 bulk density). If the size-frequency and radial distribution of particles in the zodiacal cloud were similar to those in the asteroid dust bands, we estimate that the zodiacal cloud represents ∼3×1019 g of material (in particles with 1 μm<D<1 cm) at ±10° around the ecliptic and perhaps as much as ∼1020 g in total. The later number corresponds to about a 23-km-radius sphere with 2 g cm−3 density.  相似文献   

9.
From published ground-base, spacecraft, and rocket photometry and polarimetry of the zodiacal light, a number of optical and physical parameters have been derived. It was assumed that the number density, mean particle size, and albedo vary with heliocentric distance, and shown that average individual interplanetary particles have a small but definite opposition effect, a mean single-scattering albedo in the V band at 1-AU heliocentric distance of 0.09 ± 0.01, and a zero-phase geometric albedo of 0.04. Modeled by a power law, both albedos decrease with increasing heliocentric distance as r?0.54. The corresponding exponents for changes in mean particle size and number density are related in a simple way. The median orbital inclination of zodiacal light particles with respect to the ecliptic is 12°, close to the observed median value for faint asteroids and short-period comets. Furthermore, the color of dust particles and its variation with solar phase angle closely resemble those of C asteroids. These findings are, at least, consistent with the zodiacal cloud originating primarily from collisions among asteroids. Finally, a value of ?1018?ErmE g was derived for the mass of the zodiacal cloud, where ?E is the mean particle radius (in micrometers) at 1-AU-heliocentric distance. For extinction in the ecliptic, Δm = 10?5??12mag was obtained, where ? is the solar elongation in degrees.  相似文献   

10.
The relative proportions of asteroidal and cometary materials in the zodiacal cloud is an ongoing debate. The determination of the asteroidal component is constrained through the study of the Solar System dust bands (the fine-structure component superimposed on the broad background cloud), since they have been confidently linked to specific, young, asteroid families in the main belt. The disruptions that produce these families also result in the injection of dust into the cloud and thus hold the key to determining at least a minimum value for the asteroidal contribution to the zodiacal cloud. There are currently known to be at least three dust band pairs, one at approximately 9.35° associated with the Veritas family and two central band pairs near the ecliptic, one of which is associated with the Karin subcluster of the Koronis family. Through careful co-adding of almost all the pole-to-pole intensity scans in the mid-infrared wavebands of the Infrared Astronomical Satellite (IRAS) data set, we find strong evidence for a partial Solar System dust band, that is, a very young dust band in the process of formation, at approximately 17° latitude. We think this is a confirmation of the M/N partial band pair first suggested by Sykes [1988. IRAS observations of extended zodiacal structures. Astrophys. J. 334, L55-L58]. The new dust band appears at some but not all ecliptic longitudes, as expected for a young, partially formed dust band. We present preliminary modeling of the new, partial dust band which allows us to put constraints on the age of the disruption event, the inclination and node of the parent body at the time of disruption, and the quantity of dust injected into the zodiacal cloud.  相似文献   

11.
Physical lifetimes and end-states of short-period comets are analysed in connection with the problem of the maintainance of the zodiacal dust cloud. In particular, the problem of the comet-asteroid relationship is addressed. Recent studies of the physical properties of Apollo-Amor asteroids and short-period comets (e.g., Hartmann et al., 1987) show significant differences between them, suggesting that they are distinct classes of objects. A few percent of the active SP comets might become asteroidal-like bodies in comet-type orbits due to the buildup of dust mantles. The remainder probably disintegrate as they consume their volatile content so their debris can only be observed as fireballs when they meet the Earth. Unobservable faint SP comets — i.e., comets so small (m 1014 g) that quickly disintegrate before being detected, might be a complementary source of dust material. They might be completely sublimated even at rather large heliocentric distances (r - 3 AU). Yet the released dust grains can reach the vicinity of the Sun by Poynting-Robertson drag. The mass associated with unobservable SP comets with perihelion distances q 3 AU might be comparable to that computed for the sample of observed SP co-mets with q 1.5 AU. It is concluded that SP comets (from the large to the unobservable small ones) may supply an average of several tons/sec of meteoric matter to the zodiacal dust cloud.  相似文献   

12.
Eyles  C.J.  Simnett  G.M.  Cooke  M.P.  Jackson  B.V.  Buffington  A.  Hick  P.P.  Waltham  N.R.  King  J.M.  Anderson  P.A.  Holladay  P.E. 《Solar physics》2003,217(2):319-347
We describe an instrument (SMEI) which has been specifically designed to detect and forecast the arrival of solar mass ejections and other heliospheric structures which are moving towards the Earth. Such events may cause geomagnetic storms, with resulting radiation hazards and disruption to military and commercial communications; damage to Earth-orbiting spacecraft; and also terrestrial effects such as surges in transcontinental power transmission lines. The detectors are sensitive over the optical wave-band, which is measured using CCD cameras. SMEI was launched on 6 January 2003 on the Coriolis spacecraft into a Sun-synchronous polar orbit as part of the US DoD Space Test Programme. The instrument contains three cameras, each with a field of view of 60°×3°, which are mounted onto the spacecraft such that they scan most of the sky every 102-min orbit. The sensitivity is such that changes in sky brightness equivalent to a tenth magnitude star in one square degree of sky may be detected. Each camera takes an image every 4 s. The normal telemetry rate is 128 kbits s–1. In order to extract the emission from a typical large coronal mass ejection, stellar images and the signal from the zodiacal dust cloud must be subtracted. This requires accurate relative photometry to 0.1%. One consequence is that images of stars and the zodiacal cloud will be measured to this photometric accuracy once per orbit. This will enable studies of transient zodiacal cloud phenomena, flare stars, supernovae, comets, and other varying point-like objects.  相似文献   

13.
The internal dynamics of an illuminated dust cloud of finite optical thickness is investigated. The dependence of the radiation pressure on the optical depth makes the individual particles oscillate, in one dimension, around the accelerated centre of gravity of the cloud. The cloud moves as an entity, irrespectively of the velocity dispersion of the particles and their efficiency for radiation pressure. If the optical depth does not change, i.e. if the cloud does not expand laterally, its lifetime is unlimited. A contraction caused by energy dissipation in mechanical collissions between the dust particles is expected. The range of particle sizes which can be transported by such a “coherent cloud” is estimated, as well as the acceleration of the whole cloud. The structure of the cloud in real space and in velocity space is investigated. A comparison with the “striae” observed in the dust tails of great comets shows that the parent clouds of these striae may have been of the kind considered.  相似文献   

14.
The mass loss rate of the zodiacal dust cloud near the Sun has been estimated on the basis of the orbital behaviour of circumsolar dust grains suffering sublimation. It is found that the solar dust ring located at 4 solar radii from the Sun, which consists of grains whose inward spiraling due to the Poynting-Robertson effect is stopped by the influence of sublimation, loses its mass at a rate of 3.50.35 tons per second.  相似文献   

15.
Abstract– Micrometeoroids with 100 and 200 μm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter‐family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady‐state orbital distributions obtained by dynamical simulations. We selected possible parent bodies of howardites (Vesta) and H chondrites (Hebe, Flora, Eunomia, Koronis, Maria) as target asteroids. Estimates of the asteroidal and cometary micrometeoroid mass between 2 and 4 AU from the Sun are used to compute the micrometeoroid mass influx on each target. The results show that all the target asteroids (except Koronis) receive the same amount (within the uncertainties) of asteroidal and cometary micrometeoroids. Therefore, both these populations should be observed among howardite and H chondrite carbonaceous microxenoliths. However, this is not the case: carbonaceous microxenoliths show differences similar to those existing among different groups of carbonaceous chondrites (e.g., CI, CM, CR) but two sharply distinct populations are not observed. Our results and the observations can be reconciled assuming the existence of a continuum of mineralogical and chemical properties between carbonaceous asteroids and comets.  相似文献   

16.
Asteroidal dust particles resulting from family-forming events migrate from their source locations in the asteroid belt inwards towards the Sun under the effect of Poynting-Robertson (PR) drag. Understanding the distribution of these dust particle orbits in the inner solar system is of great importance to determining the asteroidal contribution to the zodiacal cloud, the accretion rate by the Earth, and the threat that these particles pose to spacecraft and satellites in near-Earth space. In order to correctly describe this distribution of orbits in the inner solar system, we must track the dynamical perturbations that the dust particle orbits experience as they migrate inwards. In a seminal paper Öpik (1951) determines that very few of the μm-cm sized dust particles suffer a collision with the planet face as they decay inwards past Mars. Here we re-analyze this problem, considering additionally the likelihood that the dust particle orbits pass through the Hill sphere of Mars (to various depths) and experience potentially significant perturbations to their orbits. We find that a considerable fraction of dust particle orbits will enter the Hill sphere of Mars. Furthermore, we find that there is a bias with inclination, particle size, and eccentricity of the particle orbits that enter the Martian Hill sphere. In particular the bias with inclination may create a bias towards higher-inclination sources in the proportions of asteroid family particles that reach near-Earth space.  相似文献   

17.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   

18.
A dust cloud of Ganymede has been detected by in situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius=2635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite's surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.  相似文献   

19.
The results of modeling of the distribution of dust in the circumsolar zone are presented. The dust distribution was retrieved from observations of the line-of-sight velocities in the F-corona to the distances of 7–11 solar radii during the total eclipses of the Sun in different years: on July 31, 1981; August 11, 1991; March 29, 2006; and August 1, 2008. Comparison of the results has shown that the dust composition varies from year to year and the dust is dynamically nonuniform. In addition to the dust related to the zodiacal cloud and concentrating to the ecliptic plane, the dust of retrograde motion and the ejections and accretion in the polar regions are observed. From the results of observations of eclipses on July 31, 1981, August 11, 1991, and August 1, 2008, the east–west asymmetry in a sign of the line-of-sight velocities was detected: they are negative to the east of the Sun and positive to the west. Such distribution of the velocities is indicative of the nearecliptic orbital dust motion, whose direction coincides with that of the motion of the planets. In the course of the eclipse of March 29, 2006, almost no dynamical connection with the zodiacal cloud was found. At the same time, the direction, where the observed velocities are largest in value and opposite in sign on opposite sides of the Sun, was determined, which provides evidence of the orbital motion deviating from the ecliptic plane. The results of observations in 2006 reveal a clear genetic connection of the observed orbital motion of dust with the parent comets of the Kreutz family found near the Sun close to the eclipse date. The velocities observed near the symmetry line in the plane of the sky grow by absolute value with increasing the elongation, which may take place, if the line of sight croßses an empty zone that is free of dust. The modeling of the data of observations near the symmetry plane allowed the parameters of the dust distribution near the sublimation zone to be obtained. In 2006, the “black” cometary dust with a low albedo (A = 0.05) was observed; it showed high values of the power-law exponents in the distance distribution of the dust concentration (V = 2.2 > 1) and in the size distribution of grains (γ = 5.2 > 4.0) and a strong radiation pressure (β = 0.70–0.74). We estimated the mean radius of grains as ≈0.8–0.9 µm and the radius of the dust-free zone as ≈9.1–9.2 solar radii. The latter corresponds to the distances, where the low-melt components of olivines and pyroxenes disintegrate. In 2008, the observed zodiacal dust concentrating to the ecliptic plane demonstrated the canonical parameters: A = 0.1–0.2, V ≈ 1, ß ≈ 0, γ = 4.0, the mean radii of grains were 0.9–1.2 µm, and the radius of the dust-free zone was 7.0–7.6 solar radii.  相似文献   

20.
Model calculations are used to determine the location of interplanetary dust particles that contribute most of the brightness of the zodiacal light as seen from Earth, in and out of the ecliptic plane and in the F-corona. It is found that as one observes in Increasing ecliptic latitude (β), the distance to the Earth decreases for dust contributing equal fractions to the line-of-sight brightness. This and other results will help in the analysis of: (1) structures in the observed brightness of the zodiacal light, (2) bands such as those observed by IRAS, (3) temporal variations in the brightness of the zodiacal light, (4) observations of the photometric axis, and (5) past and future observations of the F-corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号