首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Aegean and surrounding area (34°N–43°N, 18°E–30°E) is separated into 76 shallow and intermediate depth seismogenic sources. For 74 of these sources intervent times for strong mainshocks have been determined by the use of instrumental and historical data. These times have been used to determine the following empirical relations: $$\begin{gathered} \log T_t = 0.24M_{\min } + 0.25M_p - 0.36\log \dot M_0 + 7.36 \hfill \\ M_f = 1.04M_{\min } - 0.31M_p + 0.28\log \dot M_0 - 4.85 \hfill \\ \end{gathered} $$ whereT 1 is the interevent time, measured in years,M min the surface wave magnitude of the smallest mainshock considered,M p the magnitude of the preceding mainshock,M f the magnitude of the following mainshock, \(\dot M_0 \) the moment rate in each source per year. A multiple correlation coefficient equal to 0.74 and a standard deviation equal to 0.18 for the first of these relations were calculated. The corresponding quantities for the second of these relations are 0.91 and 0.22. On the basis of the first of these relations and taking into consideration the time of occurence and the magnitude of the last mainshock, the probabilities for the occurrence of mainshocks in each seismogenic source of this region during the decade 1993–2002 are determined. The second of these relations has been used to estimate the magnitude of the expected mainshock.  相似文献   

2.
The repeat times,T, of strong shallow mainshocks in fourteen seismogenic sources along the western coast of South and Central America have been determined and used in an attempt at long-term forecasting. The following relation was determined: $$\log T = 0.22M_{\min } + 0.21M_p + a$$ between the repeat time,T, and the magnitudes,M min, of the minimum mainshock considered andM p , of the preceding mainshock. No dependence of the magnitude,M f , of the following mainshock on the preceding intervent time,T, was found. These results support the idea that the time-predictable model is valid for this region. This is an interesting property for earthquake prediction since it provides the ability to predict the time of occurrence of the next strong earthquake. A strong negative dependence ofM f onM p was found, indicating that a large mainshock is followed by a smaller magnitude one, andvice versa. The probability for the occurrence of the expected strong mainshocks (M s ≥7.5) in each of the fourteen seismogenic sources during the next 10 years (1992–2002) is estimated, adopting a lognormal distribution for earthquake interevent times. High probabilities (P 10>0.80) have been calculated for the seismogenic sources of Oaxaca, Chiapas and Southern Peru.  相似文献   

3.
Repeat times of strong shallow mainshocks have been determined by the use of instrumental and historical data for 68 seismogenic sources in the Aegean and surrounding area (34°N–43°N, 18°E–30°E). For 49 of these sources at least two interevent times (three mainshocks) are available for each source. By using the repeat times for these 49 sources the following relation has been determined: $$\log T_t = 0.36M_{\min } + 0.35M_p + a$$ whereT t is the repeat time, measured in years,M p the surface wave magnitude of the preceding mainshock,M min the magnitude of the smallest earthquake considered and “a” parameter which varies from source to source. A multilinear correlation coefficient equal to 0.89 was determined for this relation. By using the same repeat times for the 49 seismogenic sources, the following relation has been determined between the magnitude,M f , of the following mainshock andM min andM p . $$M_f = 0.95M_{\min } - 0.49M_p + m$$ wherem is a constant which varies from source to source. A multilinear correlation coefficient equal to 0.80 was found for this relation. The model expressed by these two relations is represented by a scheme of a time variation of stress under constant tectonic loading. In this scheme, the maximum stress values during the different seismic cycles fluctuate around a value, τ1, in a relatively narrow stress interval, expressing the high correlation coefficient of the relation between LogT andM p . On the contrary, the minimum stress values fluctuate around a value, τ2, in a much broader stress interval. However, each of these minimum stress values becomes lower or higher than τ2 if the previous one is higher or lower than τ2, respectively, expressing the negative correlation betweenM f andM p .  相似文献   

4.
Investigation of the time-dependent seismicity in 274 seismogenic regions of the entire continental fracture system indicates that strong shallow earthquakes in each region exhibit short as well as intermediate term time clustering (duration extending to several years) which follow a power-law time distribution. Mainshocks, however (interevent times of the order of decades), show a quasiperiodic behaviour and follow the ‘regional time and magnitude predictable seismicity model’. This model is expressed by the following formulas $$\begin{gathered} \log T_t = 0.19 M_{\min } + 0.33 M_p - 0.39 \log m_0 + q \hfill \\ M_f = 0.73 M_{\min } - 0.28 M_p + 0.40 \log m_0 + m \hfill \\ \end{gathered} $$ which relate the interevent time,T t (in years), and the surface wave magnitude,M f , of the following mainshock: with the magnitude,M min, of the smallest mainshock considered, the magnitude,M p , of the preceded mainshock and the moment rate,m 0 (in dyn.cm.yr?1), in a seismogenic region. The values of the parametersq andm vary from area to area. The basic properties of this model are described and problems related to its physical significance are discussed. The first of these relations, in combination with the hypothesis that the ratioT/T t , whereT is the observed interevent time, follows a lognormal distribution, has been used to calculate the probability for the occurrence of the next very large mainshock (M s ≥7.0) during the decade 1993–2002 in each of the 141 seismogenic regions in which the circum-Pacific convergent belt has been separated. The second of these relations has been used to estimate the magnitude of the expected mainshock in each of the regions.  相似文献   

5.
In order to estimate the recurrence intervals for large earthquakes occurring in eastern Anatolia, this region enclosed within the coordinates of 36–42N, 35–45E has been separated into nine seismogenic sources on the basis of certain seismological and geomorphological criteria, and a regional time- and magnitude-predictable model has been applied for these sources. This model implies that the magnitude of the preceding main shock which is the largest earthquake during a seismic excitation in a seismogenic source governs the time of occurrence and the magnitude of the expected main shock in this source. The data belonging to both the instrumental period (MS≥ 5.5) until 2003 and the historical period (I0≥ 9.0 corresponding to MS≥ 7.0) before 1900 have been used in the analysis. The interevent time between successive main shocks with magnitude equal to or larger than a certain minimum magnitude threshold were considered in each of the nine source regions within the study area. These interevent times as well as the magnitudes of the main shocks have been used to determine the following relations:
fwawhere Tt is the interevent time measured in years, Mmin is the surface wave magnitude of the smallest main shock considered, Mp is the magnitude of the preceding main shock, Mf is magnitude of the following main shock, and M0 is the released seismic moment per year in each source. Multiple correlation coefficient and standard deviation have been computed as 0.50 and 0.28, respectively for the first relation. The corresponding values for the second relation are 0.64 and 0.32, respectively. It was found that the magnitude of the following main shock Mf does not depend on the preceding interevent time Tt. This case is an interesting property for earthquake prediction since it provides the ability to predict the time of occurrence of the next strong earthquake. On the other hand, a strong negative dependence of Mf on Mp was found. This result indicates that a large main shock is followed by a smaller magnitude one and vice versa. On the basis of the first one of the relations above and taking into account the occurrence time and magnitude of the last main shock, the probabilities of occurrence Pt) of main shocks in each seismogenic source of the east Anatolia during the next 10, 20, 30, 40 and 50 years for earthquakes with magnitudes equal 6.0 and 7.0 were determined. The second of these relations has been used to estimate the magnitude of the expected main shock. According to the time- and magnitude-predictable model, it is expected that a strong and a large earthquake can occur in seismogenic Source 2 (Erzincan) with the highest probabilities of P10 = 66% (Mf = 6.9 and Tt = 12 years) and P10 = 44% (Mf = 7.3 and Tt = 24 years) during the future decade, respectively.  相似文献   

6.
In this work we review earthquakes that happened in Southern Siberia and Mongolia within the coordinates of 42°–62° N and 80°–124° E and first propose relationships between earthquake parameters (a surface-wave earthquake magnitude M s and an epicentral intensity(I 0) based on the MSK-64 scale) and maximal distances from an earthquake epicenter (R e max), hypocenter (R h max), and a seismogenic fault (R f max) to the localities of secondary coseismic effects. Special attention was paid to the study of these relationships for the effects of soil liquefaction. Hence, it was shown that secondary deformations from an earthquake were distributed in space away from an earthquake epicenter, than from an associating seismogenic fault. The effects of soil liquefaction are manifested by several times closer to a seismogenic fault, than all other effects, regardless of the type of tectonic movement in a seismic focus. Within the 40 km zone from an earthquake epicenter 44% of the known manifestations of liquefaction process occurred; within the 40 km zone from a seismogenic fault—90%. We propose the next relationship for effects of soil liquefaction: M s = 0.007 × R e max + 5.168 that increases the limits of the maximum epicentral distance at an earthquake magnitude of 5.2 ≤ M s ≤ 8.1 as compared to the corresponding relationships for different regions of the world.  相似文献   

7.
We examined the seismic activity which preceded six strong mainshocks that occurred in the Aegean (M?=?6.4–6.9, 33–43° N, 19–28° E) and two strong mainshocks that occurred in California (M?=?6.5–7.1, 32–41° N, 115–125° W) during 1995–2010. We find that each of these eight mainshocks has been preceded by a pronounced decelerating and an equally easily identifiable accelerating seismic sequence with the time to the mainshock. The two preshock sequences of each mainshock occurred in separate space, time, and magnitude windows. In all eight cases, very low decelerating seismicity, as well as very low accelerating seismicity, is observed around the actual epicenter of the ensuing mainshock. Statistical tests on the observed measures of decelerating, q d, and accelerating, q a, seismicity against similar measures calculated using synthetic catalogs with spatiotemporal clustering based on the ETAS model show that there is an almost zero probability for each one of the two preshock sequences which preceded each of the eight mainshocks to be random. These results support the notion that every strong shallow mainshock is preceded by a decelerating and an accelerating seismic sequence with predictive properties for the ensuing mainshock.  相似文献   

8.
The Iranian Plateau does not appear to be a single crustal block, but an assemblage of zones comprising the Alborz—Azerbaijan, Zagros, Kopeh—Dagh, Makran, and Central and East Iran. The Gumbel’s III asymptotic distribution method (GIII) and maximum magnitude expected by Kijko—Sellevoll method is applied in order to check the potentiality of the each seismogenic zone in the Iranian Plateau for the future occurrence of maximum magnitude (Mmax). For this purpose, a homogeneous and complete seismicity database of the instrumental period during 1900–2012 is used in 29 seismogenic zones of the examined region. The spatial mapping of hazard parameters (upper bound magnitude (ω), most probable earthquake magnitude in next 100 years (M100) and maximum magnitude expected by maximum magnitude estimated by Kijko—Sellevoll method (max MK ? Smax) reveals that Central and East Iran, Alborz and Azerbaijan, Kopeh—Dagh and SE Zagros are a dangerous place for the next occurrence of a large earthquake.  相似文献   

9.
A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G–R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush–Pamir Himalaya zone has been further divided into two seismic zones of shallow (h ≤ 70 km) and intermediate depth (h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman–Kirthar ranges, Hindukush–Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.  相似文献   

10.
The new scale Mt of tsunami magnitude is a reliable measure of the seismic moment of a tsunamigenic earthquake as well as the overall strength of a tsunami source. This Mt scale was originally defined by Abe (1979) in terms of maximum tsunami amplitudes at large distances from the source. A method is developed whereby it is possible to determine Mt at small distances on the basis of the regional tsunami data obtained at 30 tide stations in Japan. The relation between log H, maximum amplitude (m) and log Δ, a distance of not less than 100 km away from the source (km) is found to be linear, with a slope close to 1.0. Using three tsunamigenic earthquakes with known moment magnitudes Mw, for calibration, the relation, Mt = log H + log Δ + D, is obtained, where D is 5.80 for single-amplitude (crest or trough) data and 5.55 for double-amplitude (crest-to-trough) data. Using a number of tsunami amplitude data, Mt is assigned to 80 tsunamigenic earthquakes that occurred in the northwestern Pacific, mostly in Japan, during the period from 1894 to 1981. The Mt values are found to be essentially equivalent to Mw for 25 events with known Mw. The 1952 Kamchatka earthquake has the largest Mt, 9.0. Of all the 80 events listed, at least seven unusual earthquakes which generated disproportionately-large tsunamis for their surface-wave magnitude Ms are identified from the relation. From the viewpoint of tsunami hazard reduction, the present results provide a quantitative basis for predicting maximum tsunami amplitudes at a particular site.  相似文献   

11.
The aim of this study is to investigate the seismicity of Central Anatolia, within the area restricted to coordinates 30–35° longitude and 38–41° latitude, by determining the “a” and “b” parameters in a Gutenberg–Richter magnitude–frequency relationship using data from earthquakes of moment magnitude (Mw)?≥?4.0 that occurred between 1900 and 2010. Based on these parameters and a Poisson model, we aim to predict the probability of other earthquakes of different magnitudes and return periods (recurrence intervals). To achieve this, the study area is divided into six seismogenic zones, using spatial distributions of earthquakes greater than Mw?≥?4.0 with active faults. For each seismogenic zone, the a and b parameters in the Gutenberg–Richter magnitude–frequency relationship were calculated by the least squares method. The probability of occurrence and return periods of various magnitude earthquakes were calculated from these statistics using the Poisson method.  相似文献   

12.
13.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

14.
The focal mechanism solution of the Shiqu MS 4.4 earthquake occurred on May 16th, 2017 in Sichuan Province is studied by the gCAP method using the waveform data from the regional seismic networks in Sichuan, Qinghai, Tibet and Gansu provinces. The strike/dip/dipping angle of the first nodal plane are 214°/80°/167° and those of the second nodal plane are 306°/77°/10°, the optimal centroid depth is 7.3 ​± ​0.6 ​km and the moment magnitude is MW 4.5. Furthermore, the study investigates the robustness of the results against the error of crustal velocity structure, location, data quality and difference of seismic parameters, subsequently obtaining a stable resolved focal mechanism. According to the geological structure in the seismogenic area, spatial distribution of aftershock sequenceof the regional tectonic stress field, and the focal mechanism of the main shock, we suggest that the Shiqu earthquake is induced by a left-lateral strike-slip mechanism and the second nodal plane is inferred to be the seismogenic fault, consistent with the geometry of the Changshagongma fault which is the secondary fault of the northwest part of the Xianshuihe fault zone.  相似文献   

15.
—?The procedure developed by Kijko and Sellevoll (1989, 1992) and Kijko and Graham (1998, 1999) is used to estimate seismic hazard parameters in north Algeria. The area-specific seismic hazard parameters that were calculated consist of the b value of the Gutenberg–Richter frequency–magnitude relation, the activity rate λ(M) for events above the magnitude M, and the maximum regional magnitude M max. These parameters were calculated for each of the six seismogenic zones of north Algeria. The site-specific seismic hazard was calculated in terms of the maximum possible PGA at hypothetical engineering structures (HES), situated in each of the six seismogenic zones with coordinates corresponding with those of the six most industrial and populated cities in Algeria.  相似文献   

16.
Decelerating generation of preshocks in a narrow (seismogenic) region and accelerating generation of other preshocks in a broader (critical) region, called decelerating–accelerating seismic strain (D-AS) model has been proposed as appropriate for intermediate-term earthquake prediction. An attempt is made in the present work to identify such seismic strain patterns and estimate the corresponding probably ensuing large mainshocks (M ≥ 7.0) in south Japan (30–38° N, 130–138° E). Two such patterns have been identified and the origin time, magnitude, and epicenter coordinates for each of the two corresponding probably ensuing mainshocks have been estimated. Model uncertainties of predicted quantities are also given to allow an objective forward testing of the efficiency of the model for intermediate-term earthquake prediction.  相似文献   

17.
—?Modal summation technique is used to generate 5000, three-component theoretical seismograms of Love and Rayleigh waves, assuming modified PREM (PREM-C) and AK135F global earth models. The focal depth h and the geometrical fault parameters are randomly chosen so as to uniformly cover possible source mechanisms and obtain uniform distribution of log h in the interval 1?h?h?M s of the form:¶ΔM s (h)=0 forh< 20km, ΔM s (h)=0.314log(h)-0.409 for 20≠h< 60km, ΔM s (h)=1.351log(h)-2.253 for 60≠h< 100km, ΔM s (h)=0.400log(h)-0.350 for 100≠h< 600km .¶After applying the above correction, the relationship between the surface wave magnitude and the scalar seismic moment for the observational data set significantly improves, and becomes independent of the source depth. In relation to CTBT, no depth correction is needed for M S when the m b ???M S discriminant is computed, because the proposed correction is zero for earthquakes with foci above 20?km.  相似文献   

18.
A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40–83° N and 20–40° E) includes 36,563 earthquake events, which are reported as 4.0–8.3 moment magnitude (MW) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude MW. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.  相似文献   

19.
The size of major tsunamigenic earthquakes which occurred in the Japan Sea is quantified on the basis of seismic and tsunamigenic source parameters. The tsunami magnitude Mt is determined from the instrumental tsunami-wave amplitudes. The Mt values thus obtained are on average 0.2 units larger than the values of moment magnitude Mw, though the Mt scale has originally been adjusted to agree with Mw. Moreover, the volume of displaced water at the source is on average 2.3 times as large as that for the Pacific events with a comparable Mw. Nevertheless, the observed height of the sea-level disturbance at the source is found consistent with the amount of crustal deformation computed for the seismic fault models. These results indicate that the tsunami source potential itself is large for Mw in comparison with the Pacific events. The large source potential is explained in terms of the effective difference both in the rigidity of the source medium and in the geometry of the fault motion. For the Japan Sea events, the Mt scale still provides the physical measure of the tsunami potential, and Mt minus 0.2 corresponds to Mw. This predicts that the maximum amplitude of tsunami waves from Japan Sea earthquakes is at least two times as large as that from Pacific earthquakes with a comparable Mw.  相似文献   

20.
The risk formula, expressing the probability of at least one occurrence of earthquakes of greater-than-design-value magnitudes over the economic life of a structure, is modified taking into consideration the probability of no-earthquake years. The annual maximum earthquake magnitudes of three scales: Richter magnitude, also known as local magnitude (ML), body-wave magnitude (Mb), and moment magnitude (MM) in a geographical area encompassing the Bingöl Province in Turkey are taken from two sources: (1) report by Kalafat et al. (2007) [14] and (2) the web site reporting data by Kandilli Observatory which has been recording earthquakes occurring in and around Turkey since 1900. Statistical frequency analyses are applied on the three sample series using various probability distribution models, and magnitude versus average return period relationships are determined. The values of the ML, Mb, and MM series for 10% and 2% risk are computed to be around 7.2 and 8.3. The tectonic structure and seismic properties of the Bingöl region are also given briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号