首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Radial velocity anomalies in the lower mantle that give rise to triplications in the travel-time curve for short-periodP waves will produce arrivals havingdT/d values that differe by roughly 0.2–0.5 s/deg. The first two arrivals associated with such triplications will be separated by less than one second over a distance range of 4°–10° they may not, therefore, be separable visually on single seismograms, so that their presence can only be inferred from some measurable property that depends on their mutual interference. If there are lateral variations in the regions of anomalous velocity gradients, the interfering signals will also have different azimuths of arrival. Using two synthetic wavelets we have investigated the effect of interference on bothdT/d and azimuth measurements at the Yellowknife Array. We found that if the interfering pulses have a dominant frequencyv, there is a range of time separations (0.30/v0.55/v) over which the measureddT/d and azimuth values may fluctuate by much more than the differences indT/d and azimuth between the interfering signals. We have evaluated the following empirically defined functions for three different primary signals, and for three different relative amplitudes of the interfering signals:f (t), the drift function, which expresses how the measured slownesses,p, and azimuths, , differ from the slownesses and azimuths of the primary wavelets; f(), the range function, which describes the behaviour of the upper and lower bounds ofp and as a function of the difference in arrival times of the signals, andf , studied the properties of these functions, and have outlined how these properties provide criteria based on the numerical and statistical characteristics of the arrival vectors, and on the waveform of the signal that will enable small radial velocity anomalies to be more clearly delineated.Contribution No. 863 from the Earth Physics Branch.  相似文献   

2.
The paper studies the effect of magnitude errors on heterogeneous catalogs, by applying the apparent magnitude theory (seeTinti andMulargia, 1985a), which proves to be the most natural and rigorous approach to the problem. Heterogeneities in seismic catalogs are due to a number of various sources and affect both instrumental as well as noninstrumental earthquake compilations.The most frequent basis of heterogeneity is certainly that the recent instrumental records are to be combined with the historic and prehistoric event listings to secure a time coverage, considerably longer than the recurrence time of the major earthquakes. Therefore the case which attracts the greatest attention in the present analysis is that of a catalog consisting of a subset of higher quality data, generallyS 1, spanning the interval T 1 (the instrumental catalog), and of a second subset of more uncertain magnitude determination, generallyS 2, covering a vastly longer interval T 2 (the historic and/or the geologic catalog). The magnitude threshold of the subcatalogS 1 is supposedly smaller than that ofS 2, which, as we will see, is one of the major causes of discrepancy between the apparent magnitude and the true magnitude distributions. We will further suppose that true magnitude occurrences conform to theGutenberg-Richter (GR) law, because the assumption simplified the analysis without reducing the relevancy of our findings.The main results are: 1) the apparent occurrence rate exceeds the true occurrence rate from a certain magnitude onward, saym GR; 2) the apparent occurrence rate shows two distinct GR regimes separated by an intermediate transition region. The offset between the two regimes is the essential outcome ofS 1 being heterogeneous with respect toS 2. The most important consequences of this study are that: 1) it provides a basis to infer the parameters of the true magnitude distribution, by correcting the bias deriving from heterogeneous magnitude errors; 2) it demonstrates that the double GR decay, that several authors have taken as the incontestable proof of the failure of the GR law and of the experimental evidence of the characteristic earthquake theory, is instead perfectly consistent with a GR-type seismicity.  相似文献   

3.
The vertical velocity, , and the diabatic heating were computed at 800, 600, 400 and 200 mb surfaces using the Omega equation. The highest contribution to is from the diabatic heating produced by condensation associated with the precipitations appearing to be the main source of diabatic heating. The net radiative cooling and the thermal advection in the upper troposphere over the warm anticyclone result in diabatic cooling over the eastern part of the Bay of Bengal and adjoining northern and eastern regions.List of Symbols Used C p Heat capacity at constant pressure - f Coriolis parameter - g Acceleration due to gravity - P Atmospheric pressure - Q Diabatic heating rate per unit mass - R Gas constant of air - S Static stability parameter - t Time - U, V Zonal and meridional wind components - Specific volume - Relative vorticity - Absolute vorticity - Potential temperature - Geopotential - Vertical velocity (dP/dt) - 1 Adiabatic vertical velocity - 2 Vertical velocity due to certain forcing - 3 Diabatic vertical velocity - Isobaric gradient operator - 2 Laplacian operator - J(A, B) Jacobian operator  相似文献   

4.
Simple models are discussed to evaluate reservoir lifetime and heat recovery factor in geothermal aquifers used for urban heating. By comparing various single well and doublet production schemes, it is shown that reinjection of heat depleted water greatly enhances heat recovery and reservoir lifetime, and can be optimized for maximum heat production. It is concluded that geothermal aquifer production should be unitized, as is already done in oil and gas reservoirs.Nomenclature a distance between doublets in multi-doublet patterns, meters - A area of aquifer at base temperature, m2 drainage area of individual doublets in multidoublet patterns, m2 - D distance between doublet wells, meters - h aquifer thickness, meters - H water head, meters - Q production rate, m3/sec. - r e aquifer radius, meters - r w well radius, meters - R g heat recovery factor, fraction - S water level drawdown, meters - t producing time, sec. - T aquifer transmissivity, m2/sec. - v stream-channel water velocity, m/sec. - actual temperature change, °C - theoretical temperature change, °C - water temperature, °C - heat conductivity, W/m/°C - r rock heat conductivity, W/m/°C - aCa aquifer heat capacity, J/m3/°C - aCr rock heat capacity, J/m3/°C - WCW water heat capacity, J/m3/°C - aquifer porosity, fraction  相似文献   

5.
Summary The paper presents, in a condensed form, the fundamentals of global atmospheric energetics that have a bearing on the linear theory of compensation of non-equilibrium states in the Earth's atmosphere. The author introduces a new coordinate system with the vertical coordinate *=Z*/T*, which suits global atmospheric energetice.The relation between the energetics of the atmospheric system as a whole and the mean energetics level (MEL) is shown. Contrary to what has been assumed so far, it is proved that this level is neither an isopycnic level nor a physical surface, where */t=0 applies everywhere.List of Symbols Used x, y, z space coordinates in thez-system - x, y, space coordinates in the -system - t time - p, T, pressure, thermodynamic temperature and air density - p*, T*, pressure, temperature, density and geopotential on the mean energy level - g acceleration of the Earth's gravity - c p ,c v ,R specific temperature under constant pressure, volume and specific gas constant - = c p /c v Poisson's constant - E k ,E v ,E p kinetic, internal and potential energies of the atmospheric system - r'(x,y) correction function to inhomogeneous atmosphere - v, v n magnitude of motion velocity, magnitude of the normal component of velocity - O, S, S 0 volume of the whole atmospheric system, surface limiting volumeO and the Earth's surface - Z S height of surfaceS - arbitrary scalar quantity - H , horizontal differential operators in thez- andp-systems Dedicated to Corresponding Member Vojtch Vítek, Director of the Institute of Physics of the Atmosphere of the Czechoslovak Academy of Sciences, at the occasion of his sixtieth birthday.  相似文献   

6.
We consider a general stochastic branching process,which is relevant to earthquakes as well as to many other systems, and we study the distributions of the total number of offsprings (direct and indirect aftershocks in seismicity) and of the total number of generations before extinction. We apply our results to a branching model of triggered seismicity, the ETAS (epidemic-type aftershock sequence) model. The ETAS model assumes that each earthquake can trigger other earthquakes (aftershocks). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake (fertility), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime in which the distribution of fertilities is characterized by a power law ~1/1+. For earthquakes we expect such a power-distribution of fertilities with =b/ based on the Gutenberg-Richter magnitude distribution ~ 10bm and on the increase ~ 10m of the number of aftershocks with the mainshock magnitude m. We derive the asymptotic distributions pr(r) and pg(g) of the total number r of offsprings and of the total number g of generations until extinction following a mainshock. In the regime < 2 for which the distribution of fertilities has an infinite variance, we find This should be compared with the distributions obtained for standard branching processes with finite variance. These predictions are checked by numerical simulations. Our results apply directly to the ETAS model whose preferred values =0.8–1 and b=1 puts it in the regime where the distribution of fertilities has an infinite variance. More generally, our results apply to any stochastic branching process with a power-law distribution of offsprings per mother  相似文献   

7.
We estimate (/T) P of the lower mantle at seismic frequencies using two distinct approaches by combining ambient laboratory measurements on lower mantle minerals with seismic data. In the first approach, an upper bound is estimated for |(/T) P | by comparing the shear modulus () profile of PREM with laboratory room-temperature data of extrapolated to high pressures. The second approach employs a seismic tomography constraint ( lnV S / lnV P ) P =1.8–2, which directly relates (/T) P with (K S /T) P . An average (K S /T) P can be obtained by comparing the well-established room-temperature compression data for lower mantle minerals with theK S profile of PREM along several possible adiabats. Both (K S /T) and (/T) depend on silicon content [or (Mg+Fe)/Sil of the model. For various compositions, the two approaches predict rather distinct (/T) P vs. (K S /T) P curves, which intersect at a composition similar to pyrolite with (/T) P =–0.02 to –0.035 and (K S /T) P =–0.015 to –0.020 GPa/K. The pure perovskite model, on the other hand, yields grossly inconsistent results using the two approaches. We conclude that both vertical and lateral variations in seismic velocities are consistent with variation due to pressure, temperature, and phase transformations of a uniform composition. Additional physical properties of a pyrolite lower mantle are further predicted. Lateral temperature variations are predicted to be about 100–250 K, and the ratio of ( lnp/ lnV S ) P around 0.13 and 0.26. All of these parameters increase slightly with depth if the ratio of ( lnV S / lnV P ) P remains constant throughout the lower mantle. These predicted values are in excellent agreement with geodynamic analyses, in which the ratios ( ln / lnV S ) P and ( / lnV S ) P are free parameters arbitrarily adjusted to fit the tomography and geoid data.  相似文献   

8.
Summary One of the important atmospheric levels, the mean energetic level (MEL), which in a sense reflects the energetics of the whole atmosphere, is defined. Its fundamental properties are shown. In order to describe the MEL correctly a new vertical coordinate is introduced and discussed. The new coordinate, , is defined as the ratio of height and temperature. The MEL is shown to be a level with constant value of . Some incorrect conclusions concerning the MEL, derived in the past, have been corrected.List of symbols used c p specific heat of air at constant pressure - c v specific heat of air at constant volume - e base of natural logarithms - E total potential energy - f Coriolis parameter - g acceleration of gravity - i specific internal energy - I internal energy - J enthalpy - k unit vector pointing upwards - p pressure - Q diabatic heating rate - R gas constant of the air - t time - T temperature - v horizontal velocity - v (3) three-dimensional velocity - w vertical velocity in thez-system - z height - temperature growth rate (T/z) - Pechala's vertical coordinate (z/T) - generalized vertical velocity in the -system (d/dt) - specific potential energy - potential energy - density of the air - Ruppert function - T(1–)–1 - ( ) S quantity at the sea level - ( )* quantity at the MEL  相似文献   

9.
Theoretical constraints on the stress-dilation relation for a deforming Coulomb material requirev ifC=0 andv sin-1( m / m ) always, wherev is the dilation angle, is the friction angle,C is cohesion, m is the maximum shear stress, and m is the mean effective stress. Recent laboratory measurements of friction and dilatancy of simulated fault gouge show that small amplitude shear-load cycling causes compaction and consolidation. Comparison of the data with theory indicates that such load cycling produces: (1) increased coefficient of friction (or friction angle), (2) increased cohesion, and (3) increased dilatancy rate (or dilation angle). Under certain conditions of load cycling without significant plastic shear strain accumulation ( p <0.005) we find thatv exceeds both and, in contrast to theory, sin-1( m / m ). This result is interpreted in terms of enhanced cohesion and overconsolidation, which lead to residual stresses within the gouge. An analogy is drawn between these special loading conditions and those extant on natural faults. In particular, our results imply that jostling and minor stress variations associated with microearthquakes may produce strengthening of fault gouge and changes in the fault zone's stress-dilatancy relation. Hence, compaction associated with microseismicity may lead to subsequent dilation of fault gouge, even for faults with large displacement rates and large net offsets (e.g., San Andreas). In regions where such dilation persists over sufficient displacements (on the order of the critical slip distance for seismic faulting) it may tend to inhibit unstable slip.  相似文献   

10.
Scattering of seismic waves can be shown to have a frequency dependenceQ –1 3–v if scattering is produced by arrays of inhomogeneities with a 3D power spectrumW 3D(k) k –v. In the earth's crust and upper mantle the total attenuation is often dominated by scattering rather than intrinsic absorption, and is found to be frequency dependent according toQ –1 , where –1<–0.5. IfD 1 is the fractal dimension of the surface of the 3D inhomogeneities measured on a 2D section, then this corresponds respectively to 1.5<D 11.75, since it can be shown that =2(D 1–2). Laboratory results show that such a distribution of inhomogeneities, if due to microcracking, can be produced only at low stress intensities and slow crack velocities controlled by stress corrosion reactions. Thus it is likely that the earth's brittle crust is pervaded by tensile microcracks, at least partially filled by a chemically active fluid, and preferentially aligned parallel to the maximum principal compressive stress. The possibility of stress corrosion implies that microcracks may grow under conditions which are very sensitive to pre-existing heterogeneities in material constants, and hence it may be difficult in practice to separate the relative contribution of crack-induced heterogeneity from more permanent geological heterogeneities.By constrast, shear faults formed by dynamic rupture at critical stress intensities produceD 1=1, consistent with a dynamic rupture criterion for a power law distribution of fault lengths with negative exponentD. The results presented here suggest empirically thatD 1-1/2(D+1), thereby providing the basis for a possible framework to unify the interpretation of temporal variations in seismicb-value (b-D/2) and the frequency dependence of scattering attenuation ().This is PRIS contribution 046.  相似文献   

11.
We describe slip-rate dependent friction laws based on the Coulomb failure criteria. Frictional rate dependence is attributed to a rate dependence of cohesionc and friction angle . We show that differences in the stress states developed during sliding result in different Coulomb friction laws for distributed shear within a thick gouge layer versus localized shear within a narrow shear band or between bare rock surfaces. For shear within gouge, shear strength is given by =c cos + n sin, whereas for shear between bare rock surfaces the shear strength is =c cos + n tan, where and n are shear and normal stress, respectively. In the context of rate-dependent Coulomb friction laws, these differences mean that for a given material and rate dependence of the Coulomb parameters, pervasive shear may exhibit velocity strengthening frictional behavior while localized shear exhibits velocity weakening behavior. We derive from experimental data the slip-rate dependence and evolution ofc and for distributed and localized shear. The data show a positive rate dependence for distributed shear and a negative rate dependence for localized shear, indicating that the rate dependence ofc and are not the same for distributed and localized shear, even after accounting for differences in stress state. Our analysis is consistent with the well-known association of instability with shear localization in simulated fault gouge and the observation that bare rock surfaces exhibit predominantly velocity weakening frictional behavior whereas simulated fault gouge exhibits velocity strengthening followed by a transition to velocity weakening with increasing displacement. Natural faults also exhibit displacement dependent frictional behavior and thus the results may prove useful in understanding the seismic evolution of faulting.  相似文献   

12.
Hydrofracturing stress measurements have been carried out to about 0.4 km in two boreholes in Quaternary volcanic rocks in Reykjavik, Iceland, on the flank of the Reykjanes-Langjökull continuation of the Mid-Atlantic Ridge. The measurements indicate a dominant orientation of H max approximately perpendicular to the axial rift zone, in contrast to earthquake focal mechanism solutions from within the axial rift zone of the Reykjanes Peninsula. In one hole (H32) a depth-dependent change in stress orientation is indicated, with 1 horizontal above a depth of about 0.25 km, and vertical below it; however the orientation of H max remains unchanged. The data thus suggest reconciliation of an apparent conflict between the dominantly compressive indications of shallow overcoring stress measurements and dominant extension as required by focal mechanism solutions. The measured stresses are supported by the more reliable of overcoring measurements from southeast Iceland, and by recent focal mechanism solutions for the intraplate Borgarfjördur area. A fundamental change in crustal stresses appears therefore to occur as a function of distance from the axis of the axial rift zone. The data seem reasonably explicable in terms of a combination of thermoelastic mechanisms associated with accretion and cooling of spreading lithosphere plates. Stresses directly associated with the driving mechanisms of plate tectonics apparently do not dominate the observed stress pattern.  相似文献   

13.
Summary Using the fromulae given byGutenberg andRichter, the writer has computed the magnitude and energy of 1804 earthquakes which occurred in Turkey during the period 1850–1960. For drawing the Isenerget, the formula =log10 S has been used in accordance with the definitions given byToperczer andTrapp, whereS=e i/F·p represents the energy in erg/m2 h corresponding to the surface element of 0.5° Lat. x 0.5° Long. Also the relationship between the seismicity and the tectonics of Turkey has been studied by drawing the maps of the epicenters, the focus-depths and the frequences of the earthquakes with various intensities.  相似文献   

14.
Résumé On commence par définir le creusement et le comblement d'une fonctionp(, t) du tempst et des points (, ) d'une surface régulière fermée en se donnant, sur cette surface, un vecteur vitesse d'advection ou de transfert tangent à . Le creusement (ou le comblement) est la variation dep sur les particules fictives se déplaçant constamment et partout à la vitesse , A chaque vecteur et pour un mêmep(, ,t) correspond naturellement une fonction creusementC (, ,t) admissible a priori; mais une condition analytique très générale (l'intégrale du creusement sur toute la surface fermée du champ est nulle à chaque instant), à laquelle satisfont les fonctions de perturbation sur les surfaces géopotentielles, permet de restreindre beaucoup la généralité des vecteurs d'advection admissibles a priori et conduit à des vecteurs de la forme: , oùT est un scalaire régulier, () une fonction régulière de la latitude , le vecteur unitaire des verticales ascendantes etR/2 une constante. Ces vecteurs sont donc une généralisation naturelle des vitesses géostrophiques attachées à tout scalaire régulier. Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde, le vecteur d'advection par rapport auquel on doit définir le creusement est précisément une vitesse géostrophique: on a alors ()=sin etT un certain champ bien défini de température moyenne.On déduit ensuite une formule générale de géométrie et de cinématique différentielles reliant la vitesse de déplacement d'un centre ou d'un col d'un champp(, ,t) à son champ de creusementC (, ,t) et au vecteur d'advection correspondant. Cette formule peut être transformée et prend la forme d'une relation générale entre le creusement (ou le comblement) d'un centre ou d'un col et la vitesse de son déplacement, sans que le vecteur d'advection intervienne explicitement. On analyse alors les conséquences de ces formules dans les cas suivants: 1o) perturbations circulaires dans le voisinage du centre; 2o) perturbations ayant, dans le voisinage du centre, un axe de symétrie normal ou tangent à la vitesse du centre; 3o) évolution normale des cyclones tropicaux.Finalement, on examine les relations qui existent entre le creusement ou le comblement d'un champ, le vecteur d'advection et la configuration des iso-lignes du champ dans le voisinage d'un centre.Ces considérations permettent d'expliquer plusieurs propriétés bien connues du comportement des perturbations dans différentes régions.
Summary The deepening and filling (development) of a functionp(, ,t) of the timet and the points (, ) of a regular closed surface is first of all defined, in respect to a given advection or transfer velocity field tangent to , as the variation ofp on any fictitious particle moving constantly and everywhere with the velocity . For a givenp(, ,t) and to any there corresponds a well defined development fieldC (, ,t). All theseC fields are a priori admissible, but a very general analytical condition of the perturbation fields in synoptic meteorology (the integral of the development fieldC (, ,t) on any geopotential surface vanishes at any moment), leads to an important restriction to advection vectors of the form: , whereT is any regular scalar, () any regular function of latitude, the unit vector of the ascending verticals andR/2 a constant. These vectors are a natural generalisation of the geostrophic velocities attached to any regular scalar. Whenp(, ,t) is the pressure perturbation at sea level, its development must be defined in respect to a geostrophic advection vector belonging to the above defined class of vectors with ()=sin andT a well defined mean temperature field.A general formula of the differential geometry and kinematics ofp(, ,t) is then derived, giving the velocity of any centre and col of ap(, ,t) as a function of the advection vector and the corresponding development fieldC (, ,t). This formula can be transformed and takes the form of a general relation between the deepening (and filling) of a centre (or a col) of ap(, ,t) and its displament velocity, the advection vector appearing no more explicitly. A detailed analysis of the consequences of these formulae is then given for the following cases: 1o) circular perturbations in the vicinity of a centre; 2o) perturbations having, in the vicinity of a centre, an axis of symmetry normal or tangent to the velocity of the centre; 3o) normal evolution of the tropical cyclones.Finally, the relations between the developmentC (, ,t) of a fieldp(, ,t), the advection velocity vector and the configuration of the iso-lines in the vicinity of a centre are analysed.These theoretical results give a rational explanation of several well known properties of the behaviour of the perturbations in different geographical regions.


Communication à la 2ème Assemblée de la «Società Italiana di Geofisica e Meteorologia» (Gênes, 23–25 Avril 1954).  相似文献   

15.
— Starting with fundamental-mode Rayleigh-wave attenuation coefficient values (R) predicted by previously determined frequency-independent models of shear-wave Q (Q), we have obtained frequency-dependent Q models that explain measured values of R as well as of Lg coda Q and its frequency dependence at 1 Hz (Qo and , respectively) for China and some adjacent regions. The process combines trial-and-error selection of a model for the depth distribution of the frequency dependence parameter () for Q with a formal inversion for the depth distribution of Q at 1 Hz. Fifteen of the derived models have depth distributions of that are constant, or nearly constant, between the surface and a depth of 30 km. distributions that vary with depth in the upper 30 km are necessary to explain the remaining seven models. values for the depth-independent models vary between 0.4 and 0.7 everywhere except in the western portion of the Tibetan Plateau where they range between about 0.1 and 0.3 for three paths. These low values lie in a region where QLg and crustal Q are very low and suggest that they should also be low for high-frequency propagation. The models in which varies with depth all show a decrease in that value ranging between 0.55 and 0.8 in the upper 15 km of the crust and (with two exceptions where =0.0) between 0.3 and 0.55 in the depth range 15–30 km. The distribution of values between 0.6 and 0.8 (the higher part of the range) in the upper crust indicates that high-frequency waves will propagate most efficiently, relative to low-frequency waves, in a band that includes, and strikes north-northeastward from the path between event 212/97 and KMI to the path between event 180/95 and station HIA in the north.Acknowledgement. We thank Lianli Cong for providing his code for plotting crustal Q models and Robert Herrmann for writing the mode summation code for computing Lg synthetics used in this study. Our work benefited from helpful discussions with Jack Xie at Lamont-Doherty Earth Observatory of Columbia University. This research was sponsored by the Defense Threat Reduction Agency Contract No. DTRA-01-00-C-0213.  相似文献   

16.
Summary The aim of this paper is to study a problem in which the intermediate layer is non-homogeneous, the rigidity varying exponentially with depth i.e. 2=2 v 0 2 e 2pz , the density being constant, velocity varies also exponentially with depth according to the law =v 0 e pz . The variability ofKH with the change of phase velocity is shown graphically.  相似文献   

17.
Summary The magnetic susceptibility of quartz single crystals is diamagnetic (–14×10 –6 in SI units) and exhibits only very small anisotropy (mostly less than 1%); thus the susceptibility of the quartz matrix in quartzite can be regarded as virtually isotropic. Owing to the influence of the negative and isotropic susceptibility of the quartz matrix, the degree of anisotropy of quartzite, as inferred from model calculations, is higher than that of the ferrimagnetic fraction. This influence is very strong if the mean susceptibility of quartzite is in the vicinity of zero.
uma aa m ¶rt;uaaumu (nuuum–14 × 10 –6 um ) u a aumnuu ( 1%). m aum, m nuuum a a auma m m numa namuu umn. amamu ¶rt;uau ¶rt;m, m n nuu uu muam u umn nuuumu a a mn aumnmu auma , mn aumnmu aum auu. m uu au m¶rt;a, ¶rt;a ¶rt;a nuuum ua .
  相似文献   

18.
Through a detailed analysis of seismicity at the base of the transition zone, we obtain an updated value of the maximum reliable depth of confirmed seismicity, we investigate regional variation in the maximum depth of seismicity among those Wadati-Benioff zones which reach the bottom of the transition zone, and we attempt to quantify the maximum possible rate of seismic release in the lower mantle compatible with the failure to detect even a single event since the advent of modern seismological networks. We classify deep subduction zones into three groups: those whose seismicity does not reach beyond 620 km, those whose seismicity appears to terminate around 650–660 km, and Tonga-Kermadec (and the Vityaz cluster) whose seismicity extends to 685–690 km. We suggest that the depth extent of seismicity is controlled by the depth of the pv + mw transition responsible for the 660-km seismic discontinuity, which is deflected to greater depths in cold slabs than in warmer ones. We note that this transition marks the depth below which thermal perturbation of phase transitions no longer generates buoyancy anomalies and their large attendant down-dip compressive stresses and below which strain energy generated by other mechanisms may not accumulate to seismogenic levels due to superplastic weakness in fine-grained materials. We find that the maximum level of seismic activity in the lower mantle must be at least three orders of magnitude less than that observed in the transition zone.  相似文献   

19.
A turbulent magnetic dynamo can be considered as the evolution of a vector field in a turbulent fluid flow. The problem of evolution of scalar fields (e.g., number density of small particles) in a turbulent fluid flow is similar to the turbulent magnetic dynamo. The dynamo instability results in generation of magnetic field. The most important effect which can cause a generation of mean magnetic field in a turbulent fluid flow is the -effect: = – (1/3) u · ( × u), where u is the turbulent velocity field with the correlation time . A similar instability in the passive scalar problem results in formation of large-scale inhomogeneous structures in a spatial distribution of particles due to the -effect: = up ( · up), where u p is the random velocity field of the particles which they acquire in a turbulent fluid velocity field. The effect is caused by inertia of particles which results in divergent velocity field of the particles. This results in additional turbulent nondiffusive flux of particles. The mean-field dynamics of inertial particles are studied by considering the stability of the equilibrium solution of the derived evolution equation for the mean number density of the particles in the limit of large Péclet numbers. The resulting equation is reduced to an eigenvalue problem for a Schrödinger equation with a variable mass, and a modified Rayleigh-Ritz variational method is used to estimate the lowest eigenvalue (corresponding to the growth rate of the instability). This estimate is in good agreement with obtained numerical solution of the Schrödinger equation. Similar effects arise during turbulent transport of gaseous admixtures (or light noninertial particles) in a low-Mach-number compressible fluid flow. The discussed effects are important in planetary and atmospheric physics (cloud formation, pollutant dynamics, preferential concentration of particles in protoplanetary disks and also planetesimals in them).  相似文献   

20.
Summary A non-linear model of trochoidal waves is presented which represents a geometrical and kinematical generalization of Gerstner's waves and of the results of[2–4].
¶rt;aam ¶rt; mu¶rt;a , ma m u ma u am[2–4] mu umuu u uamu mm ¶rt;u.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号