首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6°N, 70°E) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19°14′N, 73°24′E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO2 and the advective mixing of water in the Gulf of Kutch. The Δ14C peak in the Thane tree occurs in the year 1964, with a value of ∼630‰, significantly lower than that of the mean atmospheric Δ14C of the northern hemisphere (∼ 1000‰). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO2 exchange rate of 11–12 mol m−2 yr−1, and an advective velocity of 28 m yr−1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr−1) of the advective transport of water between the gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ14C time series.  相似文献   

2.
Bacterial abundance and production, numbers, sizes and concentrations of transparent exopolymer particles (TEP) and total organic carbon (TOC) were measured during the 1996 summer monsoon to understand the relationship between TEP, the most labile particulate organic carbon, and bacteria. While high regional variability in the vertical distribution of TOC was discernible, TEP concentrations were high in surface waters at 18–20°N along 64°E with concentrations well over 25 mg alginic acid equivalents I−1 due to upwelling induced productivity. Their concentrations decreased with depth and were lower between 200 and 500 m. Bacterial concentrations were up to 1.99 × 108 I–1 in the surface waters and decreased by an order of magnitude or more at depths below 500 m. A better relationship has been found between bacterial abundance and concentrations of TEP than between bacteria and TOC, indicating that bacterial metabolism is fueled by availability of TEP in the Arabian Sea. Assuming a carbon assimilation of 33%, bacterial carbon demand (BCD) is estimated to be 1.017 to 4.035 g C m–2 d–1 in the surface waters. The observed TEP concentrations appear to be sufficient in meeting the surface and subsurface BCD in the northern Arabian Sea.  相似文献   

3.
Vertical and temporal variations in the activities of234Th,210Po and210Pb have been measured, in both dissolved and paniculate phases, at several stations in the eastern Arabian Sea and north-central Bay of Bengal. A comparative study allows us to make inferences about the particle associated scavenging processes in these two seas having distinct biogeochemical properties. A common feature of the234Th profiles, in the Arabian Sea and Bay of Bengal, is that the dissolved as well as total (dissolved + particulate) activity of234Th is deficient in the surface 200 m with respect to its parent,238U. This gross deficiency is attributed to the preferential removal of234Th by adsorption onto settling particles which account for its net loss from the surface waters. The scavenging rates of dissolved234Th are comparable in these two basins. The temporal variations in the234Th-238U disequilibrium are significantly pronounced both in the Arabian Sea and Bay of Bengal indicating that the scavenging rates are more influenced by the increased abundance of particles rather than their chemical make-up. In the mixed layer (0–50 m), the scavenging residence time of234Th ranges from 30 to 100 days. The surface and deep waters of both the seas show an enhanced deficiency of dissolved210Po relative to210Pb and that of210Pb relative to226Ra. The deficiencies of both210Po and210Pb in the dissolved phases are not balanced by their abundance in the particulate form indicating a net loss of both these nuclides from the water column. The scavenging rates of210Po and210Pb are significantly enhanced in the Bay of Bengal compared to those in the Arabian Sea. The mean dissolved210Po/210Pb and210Pb/226Ra activity ratios in deep waters of the Bay of Bengal are ∼ 0.7 and 0.1, respectively, representing some of the most pronounced disequilibria observed to date in the deep sea. The Bay of Bengal and the Arabian Sea appear to be the regions of most intense particle moderated scavenging processes in the world oceans. This is evidenced by the gross disequilibria exhibited by the three isotope pairs used in this study.  相似文献   

4.
δ18 O and δ13C of G.sacculifer have been measured in five cores from the northern Indian Ocean. In addition, high resolution analysis (1 to 2 cm) was performed on one core (SK-20-185) for both δ18O and gd13C in five species of planktonic foraminifera. CaCO3 variation was measured in two cores. The results, presented here, show that
–  • the summer monsoon was weaker during 18 ka and was stronger during 9 ka, relative to modern conditions;
–  • δ13C variations are consistent with independent evidence that shows that during the last glacial maximum (LGM; 18 ka) the upwelling was reduced while during 9 ka it was vigorous;
–  • calculation of CaCO3 flux shows that the LGM was characterized by low biogenic productivity in the Arabian Sea while during the Holocene productivity increased by ∼65%, as a direct consequence of the changes in upwelling. Similar changes (of lesser magnitude) are also seen in the equatorial Indian Ocean. The amount of terrigenous input into the Arabian Sea doubled during LGM possibly due to the higher erosion rate along the west coast.
–  • δ18O values indicate that the Arabian Sea was saltier by 1 to 2%o during LGM. The northern part was dominated by evaporation while in the equatorial part there was an increased precipitation.
  相似文献   

5.
We measured δ13C values of free and sulfur-bound lipids and framboidal pyrite-size distributions in three sediment cores from the southern margins of the Black Sea. The margin cores show a marked difference in the occurrence of biomarkers from green sulfur bacteria compared with the deep-basin cores, as a result of deepening of the chemocline resulting from enhanced mixing and/or decreased light-penetration as a consequence of high turbidity and productivity in shelf waters. Quantitation of biomarkers suggests that photic-zone anoxia along the shelf margin was generally absent during the deposition of unit I, although occurred during the deposition of Unit IIb at two sites.  相似文献   

6.
In the North Atlantic DSDP/IPOD cores, carbon isotope data on the bulk carbonates show significant fluctuations. In sediments now exposed on land coeval fluctuations in the carbon isotope concentrations are also recorded in pelagic and epeiric facies. For instance, in the Upper Cretaceous chalks of the Paris Basin, there is a major break at the Cenomanian-Turonian boundary. At this time, the manganese content of the chalks was also at a maximum and consequently a positive relation can be demonstrated between δ13C and manganese concentrations. The same positive correlation is also recorded in many pelagic limestones.In the North Atlantic cores, carbon isotope events are related to the black shale facies and to global oceanic anoxic events and one can suppose that in sediments deposited on the continental margins they are also related to mildly anoxic conditions. Considering the manganese geochemistry in carbonate rocks, a high manganese content in such a reducing environment can be found in the sediments only if the Mn concentration of the interstitial solutions are abnormally high. As a high Mn content in marine pore waters is believed to originate from hydrothermal process, Mn and δ13C positive excursions are ultimately related to mid-oceanic ridge activity and to a closely connected phenomenon, the great transgressive pulses during which mid-depth waters may have been anoxic. Consequently, major Mn and carbon isotope events would seem to be useful tools in paleooceanographic reconstructions.  相似文献   

7.
Particulate fluxes of aluminium, iron, magnesium and titanium were measured using six time-series sediment traps deployed in the eastern, central and western Arabian Sea. Annual Al fluxes at shallow and deep trap depths were 0.47 and 0.46 g m-2 in the western Arabian Sea, and 0.33 and 0.47 g m-2 in the eastern Arabian Sea. There is a difference of about 0.9–1.8 g m-2y-1 in the lithogenic fluxes determined analytically (residue remaining after leaching out all biogenic particles) and estimated from the Al fluxes in the western Arabian Sea. This arises due to higher fluxes of Mg (as dolomite) in the western Arabian Sea (6–11 times higher than the eastern Arabian Sea). The estimated dolomite fluxes at the western Arabian Sea site range from 0.9 to 1.35gm-2y-1. Fe fluxes in the Arabian Sea were less than that of the reported atmospheric fluxes without any evidence for the presence of labile fraction/excess of Fe in the settling particles. More than 75% of Al, Fe, Ti and Mg fluxes occurred during the southwest (SW) monsoon in the western Arabian Sea. In the eastern Arabian Sea, peak Al, Fe, Mg and Ti fluxes were recorded during both the northeast (NE) and SW monsoons. During the SW monsoon, there exists a time lag of around one month between the increases in lithogenic and dolomite fluxes. Total lithogenic fluxes increase when the southern branch of dust bearing northwesterlies is dragged by the SW monsoon winds to the trap locations. However, the dolomite fluxes increase only when the northern branch of the northwesterlies (which carries a huge amount of dolomite accounting 60% of the total dust load) is dragged, from further north, by SW monsoon winds. The potential for the use of Mg/Fe ratio as a paleo-monsoonal proxy is examined.  相似文献   

8.
Partitioning of heavy metals in surface Black Sea sediments   总被引:1,自引:0,他引:1  
Bulk heavy metal (Fe, Mn, Co, Cr, Ni, Cu, Zn and Pb) distributions and their chemical partitioning, together with TOC and carbonate data, were studied in oxic to anoxic surface sediments (0–2 cm) obtained at 18 stations throughout the Black Sea. TOC and carbonate contents, and available hydrographic data, indicate biogenic organic matter produced in shallower waters is transported and buried in the deeper waters of the Black Sea. Bulk metal concentrations measured in the sediments can be related to their geochemical cycles and the geology of the surrounding Black Sea region. Somewhat high Cr and Ni contents in the sediments are interpreted to reflect, in part, the weathering of basic-ultrabasic rocks on the Turkish mainland. Maximum carbonate-free levels of Mn (4347 ppm), Ni (355 ppm) and Co (64 ppm) obtained for sediment from the shallow-water station (102 m) probably result from redox cycling at the socalled ‘Mn pump zone’ where scavenging-precipitation processes of Mn prevail. Chemical partitioning of the heavy metals revealed that Cu, Cr and Fe seem to be significantly bound to the detrital phases whereas carbonate phases tend to hold considerable amounts of Mn and Pb. The sequential extraction procedures used in this study also show that the metals Fe, Co, Ni, Cu, Zn and Pb associated with the ‘oxidizable phases’ are in far greater concentrations than the occurrences of these metals with detrital and carbonate phases. These results are in good agreement with the recent studies on suspended matter and thermodynamic calculations which have revealed that organic compounds and sulfides are the major metal carriers in the anoxic Black Sea basin, whereas Fe-Mn oxyhydroxides can also be important phases of other metals, especially at oxic sites. This study shows that, if used with a suitable combination of the various sequential extraction techniques, metal partitioning can provide important information on the varying geological sources and modes of occurrence and distribution of heavy metals in sediments, as well as, on the physical and chemical conditions prevailing in an anoxic marine environment.  相似文献   

9.
The formation and temporal variability of the oxygen minimum zone (OMZ) of the Arabian Sea is a subject of intense research. We contribute to the discussion by studying modern seawater profiles of the Indian Ocean (salinity, O2, pH, aragonite saturation, nitrate deficit, nutrients), which show that Subantarctic Mode and Antarctic Intermediate Waters (SAMW-AAIW) have a strong influence on the OMZ characteristics of the Arabian Sea. To obtain a better grasp of the range of possible OMZ variations, we studied a 50-kyr record in the NE Arabian Sea (core MD042876) from a site at 828 m water depth within the thermocline. In this core, aragonite is preserved during North Atlantic Heinrich events (HEs) and Dansgaard-Oeschger (DO) stadials, while it is absent during DO interstadials and most of the Holocene. Considering the excellent correlation between aragonite content and Sr/Ca ratio, as well as the presence of fine-grained aragonitic needles and the isotopic composition (δ13C) of carbonates in the fine fraction, we infer that essentially all aragonite originates as fine Sr-rich debris from shallow water. A comparison with other records from the NE Arabian Sea (Sr/Ca, δ15N) indicates that aragonite variability in the cores is rather controlled by OMZ intensity variations as forcing mechanism while changes in aragonite supply seem to play a minor role. The strong correlation of aragonite content with changes in millennial-scale ventilation of the Indian Ocean, as well as a comparison with modern oceanographic conditions, supports the theory that OMZ intensity variations are controlled by changes in the formation of SAMW-AAIW, and are not only due to monsoonal changes. Thus, during HEs and DO stadials, the thermocline Arabian Sea experienced a strengthened influx of O2-rich SAMW-AAIW. On the other hand, OMZ conditions during DO interstadials and the Holocene seem best explained by analogy with the present-day situation: low supply of O2 combined with elevated O2 demand controlled by monsoon-related productivity.  相似文献   

10.
The variability in partial pressure of carbon dioxide (pCO2) and its control by biological and physical processes in the mixed layer (ML) of the central and eastern Arabian Sea during inter-monsoon, northeast monsoon, and southwest monsoon seasons were studied. The ML varied from 80–120 m during NE monsoon, 60–80 m and 20–30 m during SW- and inter-monsoon seasons, respectively, and the variability resulted from different physical processes. Significant seasonal variability was found in pCO2 levels. During SW monsoon, coastal waters contain two contrasting regimes; (a) pCO2 levels of 520–685 μatm were observed in the SW coast of India, the highest found so far from this region, driven by intense upwelling and (b) low levels of pCO2 (266 μatm) were found associated with monsoonal fresh water influx. It varied in ranges of 416–527 μatm and 375–446 μatm during inter- and NE monsoon, respectively, in coastal waters with higher values occurring in the north. The central Arabian Sea pCO2 levels were 351–433, 379–475 and 385–432 μatm during NE-inter and SW monsoon seasons, respectively. The mixed layer pCO2 relations with temperature, oxygen, chlorophylla and primary production revealed that the former is largely regulated by physical processes during SW- and NE monsoon whereas both physical and biological processes are important in inter-monsoon. Application of Louanchiet al (1996) model revealed that the mixing effect is the dominant during monsoons, however, the biological effect is equally significant during SW monsoon whereas thermodynamics and fluxes influence during inter-monsoons.  相似文献   

11.
Usingin situ data collected during 1992–1997, under the Indian programme of Joint Global Ocean Flux Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along the coastal regions of Somalia, Arabia and southern parts of the west coast of India due to coastal upwelling but also in the open waters of the central region. The open waters in the north are fertilized by a combination of divergence driven by cyclonic wind stress curl to the north of the Findlater Jet and lateral advection of nutrient-rich upwelled waters from Arabia. Productivity in the southern part of the central Arabian Sea, on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter. During both spring and fall inter-monsoons, this sea remains warm and stratified with low production as surface waters are oligotrophic. Inter-annual variability in physical forcing during winter resulted in one-and-a-half times higher production in 1997 than in 1995.  相似文献   

12.
Changes in the abundance of selected planktic foraminiferal species and some sedimentological parameters at ODP site 728A were examined to understand the fluctuations in the surface productivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased relative abundances of high fertility taxa, i.e., Globigerinita glutinata and Globigerina bulloides mainly during interglacial intervals indicate intense upwelling. Strong SW summer monsoon probably increased the upwelling in the western Arabian Sea during interglacial intervals and caused high surface productivities due to the lateral transport of eutrophic waters. Most of the glacial periods (i.e., MIS 2, 4, 6, 8 and 12) are characterized by higher relative abundances of Neogloboquadrina pachyderma and Neogloboquadrina dutertrei associated with Globigerinoides ruber. The more stratified condition and deep mixed layer due to increased NE winter monsoon are mainly responsible for the higher relative abundances of N. pachyderma during glacial periods. Some of the glacial intervals (i.e., MIS 6 and 8) are also characterized by pteropod spikes reflecting deepening of aragonite compensation depth (ACD) and relatively less intense oxygen minimum zone (OMZ) in this region due to deep sea mixing and thermocline ventilation, and relatively less intense surface productivity during winter monsoon. The interglacial periods are largely devoid of pteropod shells indicating more aragonite dissolution due to increased intensity of OMZ in the northwestern Arabian Sea.  相似文献   

13.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

14.
Salinity variations in restricted basins like the Baltic Sea can alter their vulnerability to hypoxia (i.e., bottom water oxygen concentrations <2 mg/l) and can affect the burial of phosphorus (P), a key nutrient for marine organisms. We combine porewater and solid-phase geochemistry, micro-analysis of sieved sediments (including XRD and synchrotron-based XAS), and foraminiferal δ18O and δ13C analyses to reconstruct the bottom water salinity, redox conditions, and P burial in the Ångermanälven estuary, Bothnian Sea. Our sediment records were retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. We demonstrate that bottom waters in the Ångermanälven estuary became anoxic upon the intrusion of seawater in the early Holocene, like in the central Bothnian Sea. The subsequent refreshening and reoxygenation, which was caused by gradual isostatic uplift, promoted P burial in the sediment in the form of Mn-rich vivianite. Vivianite authigenesis in the surface sediments of the more isolated part of the estuary ultimately ceased, likely due to continued refreshening and an associated decline in productivity and P supply to the sediment. The observed shifts in environmental conditions also created conditions for post-depositional formation of authigenic vivianite, and possibly apatite formation, at ~8 m composite depth. These salinity-related changes in redox conditions and P burial are highly relevant in light of current climate change. The results specifically highlight that increased freshwater input linked to global warming may enhance coastal P retention, thereby contributing to oligotrophication in both coastal and adjacent open waters.  相似文献   

15.
Bay of Bengal is well known for less saline waters in the surface layer of northern Indian Ocean. High saline waters of the Bay are considered as an influx from the Arabian Sea within a depth range of 200 to 900 m. Some of the recent observations in the western Bay of Bengal have shown salinity values higher than those reported earlier (35-2 × 10−3). Such values are explained on the basis of regional climatology suggesting their local formation on the shallow continental shelf during pre-monsoon months and their subsequent distribution along the coast.  相似文献   

16.
Numerous previous studies indicate that several different authigenic aluminosilicates form in the oceans. In this study we show, using dissolved Al distributions in sediments and waters from the nearshore regions of the East China Sea, that the process of aluminosilicate formation probably begins rapidly upon contact of detrital clays with seawater. Statistical analyses of dissolved Al-Si-H+ relations in surface sediments indicate that the minerals forming in East China Sea sediments low in dissolved Fe are dioctahedral chlorites with an average composition EX0.91Mg0.77Al5.0Si2.7O10(OH)8 (where EX = exchangeable + 1 cation). This composition is also consistent with dissolved Al and Si measurements as a function of salinity in turbid overlying waters. Results suggest a dissolution—reprecipitation mechanism for clay mineral reconstitution. This mechanism can help to explain why different authigenic clays are found in different areas of the oceans. In the East China Sea the total amount of authigenic clays present must constitute a very minor fraction of the bottom sediments. Thus, the formation of these minerals has a relatively small impact upon dissolved Si distributions. Clay mineral reconstitution in nearshore regions may provide a mechanism for buffering sediments and overlying waters with respect to pH, as the composition of minerals formed should be a direct function of the H+ activity in the surrounding environment.  相似文献   

17.
Biogeochemical processes induced by the deposition of gravity layer in marine sediment were studied in a 295-day experiment. Combining voltammetric microelectrode measurements and conventional analytical techniques, the concentrations of C, O2, N-species, Mn and Fe have been determined in porewaters and sediments of experimental units. Dynamics of the major diagenetic species following the sudden sediment deposition of few cm-thick layer was explained by alternative diagenetic pathways whose relative importance in marine sediments is still a matter of debate. Time-series results indicated that the diffusion of O2 from overlying waters to sediments was efficient after the deposition event: anoxic conditions prevailed during the sedimentation. After a few days, a permanent oxic horizon was formed in the top few millimetres. At the same time, the oxidation of Mn2+ and then Fe2+, which diffused from anoxic sediments, contributed to the surficial enrichment of fresh Mn(III/IV)- and Fe(III)-oxides. Vertical diffusive fluxes and mass balance calculations indicated that a steady-state model described the dynamic of Mn despite the transitory nature of the system. This model was not adequate to describe Fe dynamics because of the multiple sources and phases of Fe2+. No significant transfer of Mn and Fe was observed between the underlying sediment and the new deposit: Mn- and Fe-oxides buried at the original interface acted as an oxidative barrier to reduced species that diffused from below. Nitrification processes led to the formation of a NO3/NO2 rich horizon at the new oxic horizon. Over the experiment period, NO3 concentrations were also measured in the anoxic sediment suggesting anaerobic nitrate production.  相似文献   

18.
The balance between physicochemical processes, influencing vertical and temporal distributions of metal compounds in one relatively isolated anoxic environment, constitutes the objective of the present work. Ion activity product (IAP) was calculated for manganese and iron sulfides, in order to define the metal sulfide forms that control Fe and Mn solubility in the bottom waters of anoxic lagoons. Iron solubility depended on amorphous FeS formation, while manganese sulfides were a minor component in a solid solution lowering its solid-phase activity. A theoretical physicochemical model was developed for the iron speciation, based on experimental pH and redox potential data. A very good match was achieved for the measured and the theoretical total dissolved iron, at all depths. The dominance of oxidant iron species Fe(OH) 3 ? in the surface waters and their sequence by FeSH+ and FeSaq in the deeper layers brings out the influence of physicochemical parameters (dissolved oxygen, sulfide, pH and Eh) in vertical distribution of dissolved metal species, in anoxic/hypoxic basins. Based on these findings, we can conclude that the distribution of manganese and iron is of special interest, not only because these are the indicators of redox conditions but also for the role of their oxidized/reduced forms in the formation of the biogeochemical structure of redox zone.  相似文献   

19.
A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins   总被引:1,自引:0,他引:1  
Pelagic redoxclines of anoxic basins and deeps form the suboxic transition between oxygenated surface and anoxic or even sulfidic bottom waters. Intense element cycling, favoured by elevated microbial activity, causes steep gradients of physico-chemical parameters, nutrients and redox-sensitive trace metals. This study presents a conceptual model for authigenic particle formation at pelagic redoxclines, which is based on the tight coupling of Mn, Fe, and P cycles. Besides the well-known occurrence of Mn-oxides, textural (SEM-EDX) and geochemical (ICP-OES, ICP-MS) analyses of particles from the redoxclines of the Black Sea and the Baltic Sea (Gotland Basin, Landsort Deep) evidence the existence of earlier postulated Fe-oxyhydroxo-phosphates and emphasize mixed phases consisting of Mn-oxides and Fe-oxyhydroxo-phosphates as a new solid species. Most of the analyzed particles are star-shaped, of about 5 μm in size, and occur as single particles or aggregates without any morphological differences between Mn-oxides, Fe-oxyhydroxo-phosphates, and mixed phases. Throughout the redoxcline, these minerals show a general succession with maximum abundance of Mn-oxides above the redoxcline followed by mixed phases and almost pure Fe-phosphates within and below the redoxcline, respectively. Molar Fe/P ratios of single particles argue against the formation of known pure Fe-phosphates like vivianite or strengite at the lower end of the redox transition zone, but are consistent with recent experimental findings for colloidal P-bearing hydrous ferric oxides. Moreover, morphological similarities suggest the formation of irregular Fe-oxyhydroxo coatings due to oxidation of upward diffusing Fe2+ by oxygen and stepwise replacement of Mn(IV) by Fe(III) on sinking MnOx particles followed by immediate adsorption or even co-precipitation of phosphate. Batch-type experiments using biogenic MnOx particles demonstrate the efficient potential of Fe2+ oxidation by sinking MnOx particles. When entering sulfidic waters MnOx particles are progressively reduced leading to an increasing relative abundance of Fe- and P-rich particles. In deeper parts of the water column these particles are also reductively dissolved, thereby releasing Fe2+ and phosphate to the water column. This Mn-Fe-P-shuttle likely affects phosphate transport throughout the water column and thus impacts primary production at least over longer time scales. Furthermore, the particulate Mn-Fe-P-shuttle must have played an important role for the cycling of P and certain trace metals in ancient ocean basins, e.g., during certain periods of Cretaceous black shale formation and should be considered in future mass balances and modeling approaches dealing with oxic/anoxic interfaces of aquatic ecosystems.  相似文献   

20.
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号