首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为更明确近地小行星撞击地球威胁的监测预警需求, 提出了"短期威胁小行星"的概念, 即未来100yr内可能对地球造成撞击威胁且等效直径大于10m的近地小行星. 以目前已发现的756颗短期威胁小行星为基础, 分析短期威胁小行星的轨道分布特点, 研究显示其与一般近地小行星的轨道分布存在差异, 短期威胁小行星的轨道半长轴更集中于1au, 轨道面更集中于黄道面. 基于近地小行星的数量模型, 初步建立了短期威胁小行星的数量估计模型, 并预估了未来100yr内存在撞击可能的短期威胁小行星的总体数量. 短期威胁小行星的特定研究对制定近地小行星搜巡监测策略有重要意义.  相似文献   

2.
The Yarkovsky effect, which causes a slow drifting of the orbital elements (mainly the semimajor axis) of km-sized asteroids and meteors, is the weak non-gravitational force experienced by these bodies due to the emission of thermal photons. This effect is believed to play a role in the delivery of near-Earth asteroids (NEAs) from the main belt, in the spreading of the orbital elements of asteroid families, and in the orbital evolution of potentially hazardous asteroids.Here we present preliminary results of simulationing indicating that the perturbations induced by the Yarkovsky effect on the positions of some tens of NEAs can be observed by means of the high-precision astrometric observations that will be provided by the ESA mission Gaia.  相似文献   

3.
The dynamics of near-Earth asteroids near mean motion resonances with the Earth or other planets is considered. The probability domains of the motion of some near-Earth asteroids close to low-order resonances are presented. The investigations have been carried out by means of a numerical integration of differential equations, taking into account the perturbations from the major planets and the Moon. For each investigated object an ensemble of 100 test particles with orbital elements nearby those of the nominal orbit has been constructed and its evolution has been retraced over the time interval (–3000, +3000 years). The initial set of orbits has been generated on the basis of probable variations of the initial orbital elements obtained from the least square analysis of observations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
We present the results of extensive thermal-infrared observations of the C-type near-Earth Asteroid (1580) Betulia obtained in June 2002 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Betulia is a highly unusual object for which earlier radiometric observations, interpreted on the basis of simple thermal models, indicated a surface of high thermal inertia. A high thermal inertia implies a lack of thermally insulating regolith. Radiometric observations of other asteroids of comparable size indicate that regolith is present in nearly all cases. Knowledge of the surface thermal properties of small near-Earth asteroids is crucial for meaningful calculations of the Yarkovsky effect, which is invoked to explain the delivery of collisional fragments from the main belt into near-Earth orbits, and apparently has a significant influence on the orbital evolution of potentially hazardous near-Earth asteroids. Furthermore, apart from being an indicator of the presence of thermally insulating regolith on the surface of an asteroid, the thermal inertia determines the magnitude of the diurnal temperature variation and is therefore of great importance in the design of instrumentation for lander missions to small asteroids. In the case of Betulia our database is sufficiently broad to allow the use of more sophisticated thermal models than were available for earlier radiometric observations. The measured fluxes have been fitted with thermal-model emission continua to determine the asteroid's size and geometric albedo, pv. Fits obtained with a new thermophysical model imply an effective diameter of 4.57±0.46 km and an albedo of 0.077±0.015 and indicate a moderate surface thermal inertia of around 180 J m−2 s−0.5 K−1. It is difficult to reconcile our results with earlier work, which indicate a larger diameter for Betulia and a high-thermal-inertia surface of bare rock.  相似文献   

5.
D. Vokrouhlický  D. ?apek 《Icarus》2005,179(1):128-138
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric orbit of the system's center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the orbital plane constant in space and the components' rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, lightcurve observations, with their ability to track occultation and eclipse phenomena, are also very important in the case of binaries. The nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO1 in September 2006. Farther out, even more statistically significant detections are possible for several other systems including 2000 DP107, (66391) 1999 KW4 and 1996 FG3.  相似文献   

6.
Applications of the 42m European Extremely Large Telescope (E–ELT) for the physical characterization of asteroids is presented. In particular, this work focuses on the determination of sizes and other physical properties of asteroids from measurements of their heat emission in the thermal infrared (>5 μm). Here we show that E–ELT will be best suited for the physical characterization of some selected asteroids of particular interest, as for instance: (i) targets of sample return missions to near-Earth Asteroids (NEAs); (ii) km and sub-km binary asteroids for which size information will allow their bulk density to be derived; (iii) sizes and values of the thermal inertia of potentially hazardous asteroids (PHAs). These two parameters both affect the Yarkovsky effect, which plays a role in the orbital evolution of km sized asteroids and represents a large source of uncertainty in the Earth impact probability prediction of some PHAs. Thermal inertia is also a sensitive indicator for the presence or absence of thermal insulating regolith on the surface of atmosphere-less bodies. Knowledge of this parameter is thus important for the design and the development of lander- and sample return-missions to asteroids. The E–ELT will also be able to spatially resolve asteroids and detect binaries in a range of sizes that are at present not accessible to present day adaptive optics.  相似文献   

7.
Studies of near-Earth asteroids are aimed at determining their dynamical and structural history. The mineralogy and petrology of 17 near-Earth asteroids are characterized using reflectance spectroscopy with ground-based telescopes as one method to address their major issues. Implications for the origin and evolution are discussed in a separate paper. Assuming the surfaces are composed of cosmically abundant materials, the presence of certain mineralogical species can be determined from diagnostic absorption features and spectral characteristics which have been studied under known laboratory conditions and understood in terms of crystal field theory. With one possible exception, the surface composition of near-Earth asteroids consists of common rock-forming minerals such as olivine, pyroxene, and phyllosilicates. Opaque components are present but cannot be mineralogically identified with existing experimental data. The spectrum of 2201 Oljato cannot be interpreted in terms of common rock-forming minerals. This spectrum was examined for cometary features because its high orbital eccentricity suggests a possible relation to comets. No common cometary features are identified in its spectrum. The predominance of mafic silicate absorption features in spectra of near-Earth asteroids compared to the majority of main-belt asteroids may be a primary compositional feature or may be the signature of relatively fresher asteroid material.  相似文献   

8.
The use of ground-based and space baseline observations of Solar System bodies is considered. Baseline observations allow one to determine the distance to observed objects and (in some cases) the parameters of their orbital motion. Certain results of baseline observations of near-Earth asteroids and the results of model analysis of spacecraft observations are presented.  相似文献   

9.
针对地基光学监测系统对近地小行星在近太阳方向的监测存在盲区的问题,提出了远距离逆行轨道(Distant Retrograde Orbit,DRO)天基光学平台对近地小行星进行跟踪定轨的方法.通过可视性分析,筛选仿真观测数据,利用美国宇航局喷气推进实验室(Jet Propulsion Laboratory,JPL)公布的小行星初始轨道信息对不同轨道类型的目标天体进行轨道确定,将计算结果与参考轨道对比分析.仿真结果表明:在测量精度2角秒,定轨弧长3年的情况下,DRO平台对仿真算例中所选择的近地小行星的定轨精度可以达到几十公里量级,其中Atira型轨道精度可达10公里以内.由此可见,DRO天基平台对近地小行星具有较好的监测能力,定轨精度能实现对目标小行星的精确跟踪,并对其进行轨道预报.  相似文献   

10.
The size distribution of main belt of asteroids is determined primarily by collisional processes. Large asteroids break up and form smaller asteroids in a collisional cascade, with the outcome controlled by the strength-size relationship for asteroids. In addition to collisional processes, the non-collisional removal of asteroids from the main belt (and their insertion into the near-Earth asteroid (NEA) population) is critical, and involves several effects: strong resonances increase the orbital eccentricity of asteroids and cause them to enter the inner planet region; chaotic diffusion by numerous weak resonances causes a slow leak of asteroids into the Mars- and Earth-crossing populations; and the Yarkovsky effect, a radiation force on asteroids, is the primary process that drives asteroids into these resonant escape routes. Yarkovsky drift is size-dependent and can modify the main-belt size distribution. The NEA size distribution is primarily determined by its source, the main-belt population, and by the size-dependent processes that deliver bodies from the main belt. All of these effects are simulated in a numerical collisional evolution model that incorporates removal by non-collisional processes. We test our model against a wide range of observational constraints, such as the observed main-belt and NEA size distributions, the number of asteroid families, the preserved basaltic crust of Vesta and its large south-pole impact basin, the cosmic ray exposure ages of meteorites, and the cratering records on asteroids. We find a strength-size relationship for main-belt asteroids and non-collisional removal rates from the main belt such that our model fits these constraints as best as possible within the parameter space we explore. Our results are consistent with other independent estimates of strength and removal rates.  相似文献   

11.
《Planetary and Space Science》1999,47(6-7):873-881
The ROSETTA spacecraft will fly-by a few asteroids during its course to the final cometary target. The candidate asteroids presently are 3840 Ministrobel (S-type), 2703 Siwa and 140 (C-type).With the limited data presently available on these bodies we calculated some approximate quantities which may be useful to select the fly-by trajectories of the ROSETTA probe. In particular we derived the zones in which particles could stably orbit by analyzing Hills problem of three hierarchical masses—the sun, the asteroid and the orbiting particle. Then, following the approach of Hamilton and Burns, the effects of solar radiation pressure and of the ellipticity of the orbits were also taken into account. In this way for each asteroid we could calculate not only a classical quantity like the radius of the Hill sphere, but also the critical starting orbital distance (as a function of orbital inclination) within which most orbits remain bound to the asteroid, and outside which most escape as a consequence of perturbations. Moreover we determined the orbital stability zone, defined as the union of all the numerically integrated orbits showing long-term stability, for each of the target asteroids. The particular shape of these zones would suggest to have the spacecrafts close approach out of the orbital plane of the asteroids.To further investigate this problem and, in particular, to take into account the irregular shape of the asteroids, we developed a model using a polyhedral representation of the central rotating body, following a theory developed by Werner and Scheeres. This model is described here and the first orbital integration results are presented. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

12.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

13.
J. TicháM. Tichý  M. Ko?er 《Icarus》2002,159(2):351-357
The number of known near-Earth asteroids (NEAs) has increased rapidly in recent years due to large surveys. This discovery process has to be followed by follow-up observations to obtain a sufficient number of precise astrometric data needed for an accurate orbit determination of newly discovered bodies.Accurate orbit determination requires observations from at least two oppositions. If asteroids are not found in the next apparition, different from the discovery apparition, then they can be considered lost. This is particularly embarrassing for NEAs. If data for different apparitions are not found in the course of precovery surveys or in other archive data, then it is necessary to prepare targeted observations of a particular NEA in the second convenient apparition. Therefore NEA recovery is a very important part of NEA follow-up.We discuss here methods, techniques, and results of planned recoveries at the Klet' Observatory using a 0.57-m telescope equipped with a CCD detector. The Klet' NEA recovery subprogram has brought 21 planned NEA recoveries since 1997, including seven NEAs belonging to the potentially hazardous asteroid category.We briefly mention the overall work on NEA recoveries provided by several NEO follow-up programs as well as the need for communication resources supporting astrometric observers. Finally we present here a planned extension of the Klet' NEA recovery subprogram to fainter objects by means of a new 1.06-m reflector.  相似文献   

14.
The search for asteroids that maintain stable motion in the zone between the Earth and Mars has been performed. The near-Earth object 2013 RB6, which has avoided close encounters with the planets for a long period of time, has been found. Integration of the equations of motion of the object shows that its dynamical lifetime in the zone between the Earth and Mars significantly exceeds 100 Myr. 2013 RB6 moves away from orbital resonances with the planets, but is in the secular resonance ν5. Solving the question of its origin requires further observations.  相似文献   

15.
The pumping up of orbital inclinations of asteroids caused by sweeping secular resonances associated with depletion of a protoplanetary disk is discussed, focusing on the dependence on the disk inclinations and surface density distribution. The asteroids have large mean inclinations that cannot be explained by present planetary perturbations alone. It has been suggested that the sweeping secular resonances caused by disk depletion are responsible for these high inclinations. Nagasawa et al. (2000, Astron. J.119, 1480-1497) showed that the inclinations of asteroids are pumped up if the disk is depleted in an inside-out manner on a time scale longer than 3×105 years. Their assumed disk midplane is not on the invariant plane. However, it should be affected by the inclination of the disk plane. Here we investigate the dependence on the disk inclinations. We assume a disk depletion model in which the disk inside the jovian orbit has been removed and the residual outer disk is uniformly depleted. We calculate the locations of the secular resonances and the excitation magnitude of the inclinations with analytical methods. We found that the inclinations are pumped up to the observational level for a depletion time scale longer than 106 years in the case of the disk plane that coincides with the invariant plane. The required time scale is longest (3×106 years) if the disk plane coincides with the jovian orbital plane. However, it is still within the observationally inferred depletion time scale. We also studied dependence on a disk surface density gradient and found that the results do not change significantly as long as the inner disk depletion is faster than the outer disk one.  相似文献   

16.
It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for.The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results:• The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects.• The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane.• In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids.The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.  相似文献   

17.
Asteroid families are the remnants of catastrophic collisions, and their fundamental physical properties provide us the information of their parent bodies and thereafter dynamical evolutions. Especially, the orbit and spin characteristics can reveal the influences of the Yarkovsky effect and the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect on the evolution of the asteroid family, respectively. Based on the Asteroid Lightcurve Database (LCDB), the spin rate distribution of the Flora asteroid family is studied, and a tendency that the spin rates of the small Flora family members concentrate primarily in the range of 3–5 d?1 is found. The analysis on the spin states of the Flora family asteroids tells that most of these asteroid family members are in the prograde spinning state. However, for the Flora family members with an orbital semi-major axis smaller than 2.2 au, the ratio between the number of prograde spinning members and that of retrograde ones is close to that of the near-Earth asteroids, namely 1 : 3. Furthermore, for those prograde spinning Flora family asteroids with an orbital semi-major axis larger than 2.2 au, a portion of them exhibit the aggregation in the distribution of orbital semi-major axis against the absolute magnitude, and in which nine members show the features similar to the Slivan state.  相似文献   

18.
Recent work on the gravitational focusing of meteoroid streams and their threat to satellites and astronauts in the near-Earth environment has concentrated on Earth acting as the gravitational attractor, totally ignoring the Moon. Though the Moon is twelve-thousandths the mass of the Earth, it too can focus meteors, albeit at a much greater distance downstream from its orbital position in space. At the Earth–Moon distance during particular phases of the Moon, slower speed meteoroid streams with very compact radiant diameters can show meteoroid flux enhancements in Earth’s immediate neighborhood. When the right geometric alignment occurs, this arises as a narrowed beam of particles of approximately 1,000 km width. For a narrow radiant of one-tenth degree diameter there is a 10-fold increase in the level of flux passing through the near-Earth environment. Meteoroid streams with more typical radiant sizes of 1° show at most two times enhancement. For sporadic sources, the enhancement is found to be insignificant due to the wide angular spread of the diffuse radiant and thus may be considered of little importance.  相似文献   

19.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

20.
In considering the modern-day hazard from infalling near-Earth asteroids and comets, the focus has shifted toward the smallest, most frequent impacts that can do damage on the ground, like the 1908 Tunguska aerial burst. There is considerable uncertainty about the potential for damage by objects in the range 20 to 100 m diameter. Since smaller, less dangerous, meter-sized meteoroids are part of a continuum of small interplanetary bodies, derived by a collisional cascade and Yarkovsky spin-up, research on such phenomena by meteor scientists can shed light on a vital question that will soon have great practical relevance as new telescopic searches for near-Earth asteroids come on line: what is the threshold size between harmless high-altitude airbursts and impacts that can cause lethal damage on the ground?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号