首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Stefano Branca   《Geomorphology》2003,53(3-4):247-261
In this paper, the interrelationships between volcanic activity and fluvial events in the Alcantara Valley are investigated. Based on the correlation between the stratigraphy of the NE flank of Mt Etna and subsurface data, the geological and geomorphological evolutions of the valley are reconstructed. New 1:10 000 scale geological mapping shows that the bulk of this sector of the volcano is made up of the Ellittico volcano lava flows, though they are widely covered by the products of the eruptive activity of the last 15 ka. The present-day morphological setting of the Alcantara Valley is the result of two main evolutionary phases initiated during the activity of the Ellittico volcano. Only one lava flow invasion of the valley floor occurred in the first phase. This phenomenon was followed by a long period of erosional processes leading to the entrenchment of the drainage pattern and the erosion of the Ellittico lava flow. About 20–25 ka ago, an important change in the frequency of the lava flow invasions into the valley occurred associated with the final stage of the Ellittico volcano activity marking the beginning of the second phase. During this phase, volcanic processes became predominant with respect to other morphogenetic processes in the Alcantara Valley. Lava flows coming from the NE flank of the Ellittico volcano caused a radical modification of the morphological setting of this area, even though only one lava flow emitted by an eruptive fissure located within the valley partially filled the riverbed. During the eruptive activity of the last 15 ka, the complete filling of the Alcantara Valley floor occurred. In particular, between 15 and 7 ka, a lava flow originated from the Mt Moio scoria cone filled the valley floor for a distance of about 9 km. Following a short period of erosion, an eruptive fissure located within the valley generated a 20–21-km-long lava flow that was channelled along the full extent of the Alcantara Valley and stretches for about 3 km offshore in the Ionian sea. In the last 7 ka, lava flows originating from the NE-Rift zone produced only temporary damming of the riverbed without any important contribution to the filling of the Alcantara Valley.  相似文献   

2.
The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect.  相似文献   

3.
Digital elevation models (DEMs) have been widely used for a range of applications and form the basis of many GIS-related tasks. An essential aspect of a DEM is its accuracy, which depends on a variety of factors, such as source data quality, interpolation methods, data sampling density and the surface topographical characteristics. In recent years, point measurements acquired directly from land surveying such as differential global positioning system and light detection and ranging have become increasingly popular. These topographical data points can be used as the source data for the creation of DEMs at a local or regional scale. The errors in point measurements can be estimated in some cases. The focus of this article is on how the errors in the source data propagate into DEMs. The interpolation method considered is a triangulated irregular network (TIN) with linear interpolation. Both horizontal and vertical errors in source data points are considered in this study. An analytical method is derived for the error propagation into any particular point of interest within a TIN model. The solution is validated using Monte Carlo simulations and survey data obtained from a terrestrial laser scanner.  相似文献   

4.
Elastic finite element models are applied to investigate the effects of topography and medium heterogeneities on the surface deformation and the gravity field produced by volcanic pressure sources. Changes in the gravity field cannot be interpreted only in terms of gain of mass disregarding the ground deformation of the rocks surrounding the source. Contributions to gravity changes depend also on surface and subsurface mass redistribution driven by dilation of the volcanic source. Both ground deformation and gravity changes were firstly evaluated by solving a coupled axisymmetric problem to estimate the effects of topography and medium heterogeneities. Numerical results show significant discrepancies in the ground deformation and gravity field compared to those predicted by analytical solutions, which disregard topography, elastic heterogeneities and density subsurface structures. With this in mind, we reviewed the expected gravity changes accompanying the 1993–1997 inflation phase on Mt Etna by setting up a fully 3-D finite element model in which we used the real topography, to include the geometry, and seismic tomography, to infer the crustal heterogeneities. The inflation phase was clearly detected by different geodetic techniques (EDM, GPS, SAR and levelling data) that showed a uniform expansion of the overall volcano edifice. When the gravity data are integrated with ground deformation data and a coupled FEM modelling was solved, a mass intrusion could have occurred at depth to justify both ground deformation and gravity observations.  相似文献   

5.
Influence of survey strategy and interpolation model on DEM quality   总被引:2,自引:0,他引:2  
Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.  相似文献   

6.
Using data from two dense array of short period seismometers, we analyse the kinematic properties of volcanic tremor preceding and accompanying the 2004–2005 eruption of Etna Volcano, Italy. Results from slowness analyses indicate the action of at least two distinct sources. The first dominates the pre-eruptive period, and is likely associated with the main plumbing system feeding the Summit and southeast craters. Following the onset of the eruption, secondary directions of wave-arrival encompass the eruptive fissures, located on the lower eastern flank of the southeast crater. Nonetheless, significant energy radiation from this latter source was also occurring prior to the onset of the lava effusion, likely suggesting the presence of a resident magma batch, in agreement with independent petrologic and geochemical data.  相似文献   

7.
8.
A method is presented to explicitly incorporate spatial and scale vagueness – double vagueness – into geomorphometric analyses. Known limitations of usual practices include using a single fixed set of crisp thresholds for morphometric classification and the imposition of a single arbitrary number of scales of analysis to the entire digital elevation model (DEM). Among the advantages of the proposed method are: fuzzification of morphometric classification rules, scale-dependent adaptive fuzzy set parametrization and an objective definition of maximum scale of analysis on a cell-by-cell basis. The method was applied to several DEMs ranging from the ocean floor to surface landscapes of both Earth and Mars. The result was evaluated with respect to modal morphometric features and to characteristic scales, suggesting a more robust method for deriving both morphometric classifications and terrain attributes. We argue that the method would be preferable to any single-scale crisp approach, at least in the context of preliminary hands-off morphometric analyses of DEMs.  相似文献   

9.
S.J. Hampton  J.W. Cole   《Geomorphology》2009,104(3-4):284-298
Lyttelton Volcano, Banks Peninsula, New Zealand, has historically been viewed as a simple volcanic cone. This paper uses digital terrain models (DTM) and primary volcanic landforms to reinterpret Lyttelton Volcano as having multiple eruptive centres. Primary volcanic landforms are features produced during active volcanism, classified as constructional, hypabyssal, and erosional volcanic features. Constructional volcanic features are lava flows, scoria cones and domes; hypabyssal volcanic features are dykes and sills; and erosional volcanic features are valley and ridge patterns and orientations. Lava flow trends are recognised from aerial photograph analysis and supported by field observations, highlighting radiating lava trends around specific locations within Lyttelton Harbour. Scoria cones and domes occur on the outer flanks of volcanic cones, and are used as such in the identification of remnant cone surfaces. Dyke orientations are plotted and then projected to the interior of the volcano, defining 13 zones of convergence. The projected arrays of these orientations highlight defined regions along the erosional crater rim, each indicating a radial dyke swarm, from which the projected trends of the associated dykes indicate an eruptive centre. Valley and ridge orientations are projected from the longest valley or ridge segment, towards the inner harbour. Radiating erosive patterns are incepted during the growth and degradation of a volcanic cone, with the resulting trends orienting to the summit. Zones of convergence/eruptive centres are identified from lava flow orientations, onlapping lava sequences, scoria cones, and intrusive locations. The summit of a volcanic edifice can be identified from the orientations of valleys and ridges, while radial dyke systems determine whether this summit was a volcanic centre or simply a local topographic high. Volcanic landforms are used to identify cone sectors, the preserved sector associated with a particular eruptive centre. Cone sector limits are defined by a basal footprint and an erosional crater rim, with similar arcuate features (remnant cone features) being exposed in the interior of the volcano. Lyttelton Volcano comprises fifteen volcanic cones, with vent locations controlled by underlying fault lineaments. The growth and erosion of each volcanic cone is reflected in primary volcanic landforms, with the preserved features of cones confined to cone sectors and cone artefacts.  相似文献   

10.
山东临朐、昌乐地区晚第三纪火山地貌   总被引:1,自引:0,他引:1  
韩美 《地理研究》1990,9(1):18-27
山东临朐、昌乐地区是渤海盆地南缘,郯庐断裂带中段西侧晚第三纪火山地貌集中分布的地区之一。本文对区内火山地貌类型和地貌发育过程作了重点探讨。  相似文献   

11.
山东临朐、昌乐地区晚第三纪火山地貌   总被引:1,自引:0,他引:1  
山东临朐、昌乐地区是渤海盆地南缘,郯庐断裂带中段西侧晚第三纪火山地貌集中分布的地区之一。本文对区内火山地貌类型和地貌发育过程作了重点探讨。  相似文献   

12.
Existing algorithms of geomorphometry can be applied to digital elevation models (DEMs) given with plane square grids or spheroidal equal angular grids on the surface of an ellipsoid of revolution or a sphere. Computations on spheroidal equal angular grids are trivial for modelling of the Earth, Mars, the Moon, Venus, and Mercury. This is because: (a) forms of these celestial bodies can be described by an ellipsoid of revolution or a sphere and (b) for these surfaces, there are well-developed theory and algorithms to solve the inverse geodetic problem as well as to determine spheroidal trapezoidal areas. It is advisable to apply a triaxial ellipsoid for describing the forms of small moons and asteroids. However, there are no geomorphometric algorithms intended for such a surface. In this article, first, we formulate the problem of geomorphometric modelling on a triaxial ellipsoid surface. Then, we recall definitions and formulae for coordinate systems of a triaxial ellipsoid and their transformation. Next, we present analytical and computational solutions, which provide the basis for geomorphometric modelling on the surface of a triaxial ellipsoid. The Jacobi solution for the inverse geodetic problem has a fundamental mathematical character. The Bespalov solutions for determination of the length of meridian/parallel arcs and the spheroidal trapezoidal areas are computationally efficient. Finally, we describe easy-to-code algorithms for derivation of local and non-local morphometric variables from DEMs based on a spheroidal equal angular grid of a triaxial ellipsoid.  相似文献   

13.
严艳梓  汤国安  熊礼阳  方炫 《地理研究》2014,33(8):1442-1456
月球表面粗糙度是揭示月表地貌形态空间分异特征的重要指标,并在一定程度上映射月表地貌的形成与演化机理。运用基于中国“嫦娥一号”卫星获取的DEM数据,提取月球雨海地区的月表粗糙度,并在月球正面地质图数据辅助下,分析月表粗糙度分布特征及其与地质单元岩性以及地质年龄的关系。结果显示:月球雨海地区的粗糙度与地质单元岩性存在较强相关关系,且随着地质年龄的增长,玄武岩单元的粗糙度呈现增大的趋势。此外,在小于7 km的尺度范围内,雨海地区受持续撞击作用的影响,Hurst指数分布在0.7~0.9之间,地形较为粗糙;在更大尺度上,由于受到火山熔岩流充填机制的控制,Hurst指数不断减小,地形不断趋于平缓。  相似文献   

14.
Digital elevation model (DEM) elevation accuracy and spatial resolution are typically considered before a given DEM is used for the assessment of coastal flooding, sea-level rise or erosion risk. However, limitations of DEMs arising from their original data source can often be overlooked during DEM selection. Global elevation error statistics provided by DEM data suppliers can provide a useful indicator of actual DEM error, but these statistics can understate elevation errors occurring outside of idealised ground reference areas. The characteristic limitations of a range of DEM sources that may be used for the assessment of coastal inundation and erosion risk are tested using high-resolution photogrammetric, low- and medium-resolution global positioning system (GPS)-derived and very high-resolution terrestrial laser scanning point data sets. Errors detected in a high-resolution photogrammetric DEM are found to be substantially beyond quoted error, demonstrating the degree to which quoted DEM accuracy can understate local DEM error and highlighting the extent to which spatial resolution can fail to provide a reliable indicator of DEM accuracy. Superior accuracies and inundation prediction results are achieved based on much lower-resolution GPS points confirming conclusions drawn in the case of the photogrammetric DEM data. This suggests a scope for the use of GPS-derived DEMs in preference to the photogrammetric DEM data in large-scale risk-mapping studies. DEM accuracies and superior representation of micro-topography achieved using high-resolution terrestrial laser scan data confirm its advantages for the prediction of subtle inundation and erosion risk. However, the requirement for data fusion of GPS to remove ground-vegetation error highlighted limitations for the use of side-scan laser scan data in densely vegetated areas.  相似文献   

15.
本文分别利用光学立体和In SAR技术生成了东南极Grove山地区15 m分辨率的ASTER DEM和20 m分辨率的In SAR DEM。在利用ASTER立体像对生成DEM的过程中引入ICESat测高数据作为高程控制以减少错误匹配,提高DEM垂直精度;而在利用ERS tandem数据生成DEM后,选取ICESat测高数据对In SAR DEM进行倾斜面纠正,以消除基线不精确估计等带来的影响。通过与未作控制的ICESat测高数据进行比较,评价了两种DEM的精度并对误差进行了分析。同时,比较了两种DEM的差异,并分析了造成这些差异的原因,探讨了两种技术生成南极冰盖DEM的优势和不足。最后结合两DEM的优势,融合生成了Grove山地区高精度的DEM。  相似文献   

16.
Detailed seismic stratigraphic analysis of 2D seismic data over the Faroe‐Shetland Escarpment has identified 13 seismic reflection units that record lava‐fed delta deposition during discrete periods of volcanism. Deposition was dominated by progradation, during which the time shoreline migrated a maximum distance of ~44 km in an ESE direction. Localised collapse of the delta front followed the end of progradation, as a decrease in volcanic activity left the delta unstable. Comparison with modern lava‐fed delta systems on Hawaii suggests that syn‐volcanic subsidence is a potential mechanism for apparent relative sea level rise and creation of new accommodation space during lava‐fed delta deposition. After the main phase of progradation, retrogradation of the delta occurred during a basinwide syn‐volcanic relative sea level rise where the shoreline migrated a maximum distance of ~75 km in a NNW direction. This rise in relative sea level was of the order of 175–200 m, and was followed by the progradation of smaller, perched lava‐fed deltas into the newly created accommodation space. Active delta deposition and the emplacement of lava flows feeding the delta front lasted ~2600 years, although the total duration of the lava‐fed delta system, including pauses between eruptions, may have been much longer.  相似文献   

17.
Abstract

Modelling of erosion and deposition in complex terrain within a geographical information system (GIS) requires a high resolution digital elevation model (DEM), reliable estimation of topographic parameters, and formulation of erosion models adequate for digital representation of spatially distributed parameters. Regularized spline with tension was integrated within a GIS for computation of DEMs and topographic parameters from digitized contours or other point elevation data. For construction of flow lines and computation of upslope contributing areas an algorithm based on vector-grid approach was developed. The spatial distribution of areas with topographic potential for erosion or deposition was then modelled using the approach based on the unit stream power and directional derivatives of surface representing the sediment transport capacity. The methods presented are illustrated on study areas in central Illinois and the Yakima Ridge, Washington.  相似文献   

18.
This paper presents the results of morphotectonic and morphometric research carried out in order to determine the neotectonic development of the volcanic mountains and a drainage network in SW Cappadocia. The study area extends among the Aksaray, Ni?de, and Nev?ehir Provinces. The study area comprises Hasanda?, Melendiz, Keçiboyduran, Göllüda? Mountains and the adjacent parts of these volcanic mountains.Data collected exclusively from 1:25,000 digitised topographic maps and 10 m-resolution DEMs were used to define parameters related to the longitudinal profile of streams. The study area was divided into 10 volcanic units. Longitudinal profiles of 20 streams and stream orders were analysed to determine a regional tectonic differentiation pattern in these units. The streams in the study area drain into four different tectonic depressions. These depressions are Aksaray plain controlled by the Tuz Gölü fault (TGF), Çiftlik plain controlled by the Keçiboyduran–Melendiz fault (KMF), Misli plain controlled by the Derinkuyu fault (DF), and Bor plain controlled by the Ni?de Fault Zone (NFZ). An analysis of morphometric parameters shows that the development of a drainage network is associated with faults and rock resistance. Occurrence of morphometric parameters with different values in units reveals that the volcanic mountains were not uplifted in the same period and were subjected to different morphologic processes. High total order number in the south of Hasanda? (unit 3) and Melendiz Mountains (unit 7) indicate that the uplift ratio of the southern part is much greater than that of the northern part. Moreover, development of the drainage network in the south is in a more advanced phase than in the north. Indeed, the drainage network in the north is in the youngest erosional phase of all parts of the study area. The increased stream length-gradient indices (SL), and stream gradients and an analysis of headward erosion show that the streams displaying the longest and highest reach of the erosional phase are all in the southern part of Keçiboyduran and Melendiz Mountains. The longitudinal profile (Lp) of the present thalweg of the streams is irregular. The irregular Lp are associated with four different causes. These are geological variations in resistance, tectonics, and volcanic topography and downcutting in response to stream incision. The beginning of the fluvial incision in the northern part is younger than in the south.  相似文献   

19.
This paper presents a semi-automatic method using an unsupervised neural network to analyze geomorphometric features as landform elements. The Shuttle Radar Topography Mission (SRTM) provided detailed digital elevation models (DEMs) for all land masses between 60°N and 57°S. Exploiting these data for recognition and extraction of geomorphometric features is a challenging task. Results obtained with two methods, Wood's morphometric parameterization and the Self Organizing Map (SOM), are presented in this paper.Four morphometric parameters (slope, minimum curvature, maximum curvature and cross-sectional curvature) were derived by fitting a bivariate quadratic surface with a window size of 5 by 5 to the SRTM DEM. These parameters were then used as input to the two methods. Wood's morphometric parameterization provides point-based features (peak, pit and pass), line-based features (channel and ridge) and area-based features (planar). Since point-based features are defined as having a very small slope when their neighbors are considered, two tolerance values (slope tolerance and curvature tolerance) are introduced. Selection of suitable values for the tolerance parameters is crucial for obtaining useful results.The SOM as an unsupervised neural network algorithm is employed for the classification of the same morphometric parameters into ten classes characterized by morphometric position (crest, channel, ridge and plan area) subdivided by slope ranges. These terrain features are generic landform element and can be used to improve mapping and modeling of soils, vegetation, and land use, as well as ecological, hydrological and geomorphological features. These landform elements are the smallest homogeneous divisions of the land surface at the given resolution. The result showed that the SOM is an efficient scalable tool for analyzing geomorphometric features as meaningful landform elements, and uses the full potential of morphometric characteristics.  相似文献   

20.
《Basin Research》2018,30(Z1):437-451
Many prospective sedimentary basins contain a variety of extrusive volcanic products that are ultimately sourced from volcanoes. However, seismic reflection‐based studies of magmatic rift basins have tended to focus on the underlying magma plumbing system, meaning that the seismic characteristics of volcanoes are not well understood. Additionally, volcanoes have similar morphologies to hydrothermal vents, which are also linked to underlying magmatic intrusions. In this study, we use high resolution 3D seismic and well data from the Bass Basin, offshore southern Australia, to document 34 cone‐ and crater‐type vents of Miocene age. The vents overlie magmatic intrusions and have seismic properties indicative of a volcanic origin: their moderate–high amplitude upper reflections and zones of “wash‐out” and velocity pull‐up beneath. The internal reflections of the vents are similar to those found in lava deltas, suggesting they are composed of volcaniclastic material. This interpretation is corroborated by data from exploration wells which penetrated the flanks of several vents. We infer that the vents we describe are composed of hyaloclastite and pyroclasts produced during submarine volcanic eruptions. The morphology of the vents is typical of monogenetic volcanoes, consistent with the onshore record of volcanism on the southern Australian margin. Based on temporal, spatial and volumetric relationships, we propose that submarine volcanoes can evolve from maars to tuff cones as a result of varying magma‐water interaction efficiency. The morphologies of the volcanoes and their links to the underlying feeder systems are superficially similar to hydrothermal vents. This highlights the need for careful seismic interpretation and characterization of vent structures linked to magmatic intrusions within sedimentary basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号