首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charged dust grains of radiia3×10–6 cm could be a help in understanding the production of primary cosmic ray particles in extensive air showers (EAS). A two-stage acceleration mechanism is proposed in order to accelerate dust grains up to relativistic energy. In the first stage, dust grains acquire suprathermal energy (Suprathermal Grains) by the Fermi mechanism. In the second stage, suprathermal grains attain relativistic energy by the Alfvén magnetic pumping mechanism yielding the primary cosmic ray particles. Ionization loss has been considered to be a most important loss mechanism for charged dust grains in a fully ionized medium. It is suggested that graphite dust grains of intergalactic origin may be responsible for high energy (>1020 eV) cosmic rays.  相似文献   

2.
The effects of the solar radiation field on the propagation of relativistic dust grains are evaluated. It is concluded that relativistic iron grains with energies 1019 eV will melt in the solar radiation field before they reach the Earth's orbit around the Sun. However iron grains with lower energies will reach the Earth's orbit but grains travelling from the direction of the Sun will melt. This directional anisotropy or fingerprint may be used to search for relativistic dust grains in the primary cosmic rays. The fact that no significant solar system anisotropy has been detected places constraints on the hypothesis that the initiating particles of the extensive air showers are relativistic iron grains.  相似文献   

3.
Charged dust grains of radiia3×10–63×10–5 cm may be driven out of the galaxy due to radiation pressure of starlight. Once clear of the main gas-dust layer, dust grains may then escape into intergalactic space. Such grains are virtually indestructible-being evaporated only during galaxy formation. The dust grains, once injected into the intergalactic medium, may acquire suprathermal energy, thus suprathermal grains in collision with magnetized cloud by the Fermi process. In order to attain relativistic energy, suprathermal grains have to move in and out (scattering) of the magnetic field of the medium. It is now well established that high energy cosmic rays are of the order 1020 eV or more. We have speculated that these high energy (>-1018 eV) cosmic ray particles are charged dust grains, of intergalactic origin. This is possible only if there exists a magnetic field in the intergalactic medium.  相似文献   

4.
It is suggested that cosmic rays of energies as high as 1020 eV consist of dust grains of relativistic energies. Such dust grains as typical in interstellar space are accelerated first by a strong radiation pressure of luminous, compact galaxies and then by magnetic processes. A grain with the mass of about 10–16 g and the Lorentz factor of about 103 attains an energy as large as 1020 eV and produces a huge extensive air shower. Such grains survive against the collisions with cosmic microwave photons. This would remove the serious difficulty, if both the cosmic microwave radiation and the huge extensive air showers, which were regarded as due to protons of energies greater than 1019 eV, existed in spite of that the protons should strongly attenuate by the collisions with the radiation.  相似文献   

5.
An analysis is made of the implications of assuming that suprathermal dust grains (a3×108 cm) of intergalactic origin may acquire cosmic ray energies as high as 1020 eV. These dust grains may attain suprathermal energy (v g3×108 cm s–1) by the Fermi process. Initially the dust grains are accelerated by the radiation pressure against the drag of the ambient gas of the medium, but once these dust grains attain a terminal velocity (U105 cm s–1), then they may be expelled out of the galactic region into the intergalactic medium and finally acquire high energy  相似文献   

6.
Attention is given to the radiation of microwaves by charged dust in space. Presently-used particle distributions do not restrict the presence in space of large numbers of small (r<10–6 cm) silicate grains, but it is shown that such densities (10–25–10–26 g cm–3) of small grains would produce a microwave background with an energy density of the same order of magnitude as the energy density of the (presumed) cosmological 3 K background. Limits set by the isotropy of the latter are: (HI clouds)10–26, (Galactic plane)10–30, (Halo)10–32, (Local Group)10–34 g cm–3. These limits imply that either there is a cutoff in particle distributions atr10–6 cm, or that the density of silicate grains in space has been generally overestimated, or that cosmic rays have broken up a lot of grains so that they now form a population of grains of very small size (10–7 cm) which are difficult to detect by conventional methods. One way to look for the latter population is by studying expected distortions of the 3 K spectrum to the short wavelength side of the portion hitherto observed (grains may have a size distribution able to give an approximate black-body curve for radiation from larger grains of 10–6 cm size), and by testing the effective energy density of the 3 K field in other galaxies.  相似文献   

7.
The physical conditions under which suprathermal grains may loose energy and the processes involving the grains (a3×10–6 cm) destruction are investigated. It is found that the dust grain once attaining the velocityU (105 cm s–1) may attain suprathermal energy (v g3×108 cm s–1) and subsequently may also attain relativistic energy are almost indestructible in the accelerating phase.  相似文献   

8.
Charged dust grains of radiia3×10–63×10–5 cm may acquire relativistic energy (>1018 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out (scattering) of the magnetic field of the medium. A relativistic grain of radiusa10–5 cm with Lorentz factor 103 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts.  相似文献   

9.
It is shown that in the radiation era of the Universe spatial temperature fluctuations (T/T)<10–5 in the cosmic plasma lead to huge changes of the density up to (/)104. This effect results from the fact that the cosmic plasma in the radiation era can be considered as a general relativistic Boltzmann gas which is found in the very vincinity of equilibrium.  相似文献   

10.
The observations of the reddening of the distant galaxies and the weak diffuse radiation in the clusters of galaxies can be interpreted as a consequence of the presence of dust grains in the intergalactic medium. When allowance is made for the destruction of the grains in collision with particles of the hot gas, its lifetime is about 107–108 yr at a gas concentrationn g 10–3 cm–3. The detection of the infrared (IR) emission from the galaxy clusters might be the test for the proof of the presence of dust grains in the intergalactic medium. In this paper the estimates of the expected intensities and fluxes of IR emission for the spectral region 50–300 are presented for two galaxy clusters in Coma and Perseus. The parameters of the hot gas spatial distribution are chosen from X-ray observations. Having assumed that intergalactic dust can be ejected only from the galaxies, we used such a model for intergalactic dust grains which explains very well the interstellar dust effects. It is shown that the dust temperature, which is determined from the general energetic balance of the dust grains, can achieve some scores of degrees of Kelvin. Two models of the dust spatial distribution are considered. It is found that the maximum of IR flux for the Coma cluster lies near =100 and the same for the Perseus cluster near 50–70. The total fluxes of IR emission from these clusters are about 105–106 Jy and can be detected by modern observational methods.  相似文献   

11.
Temperature fluctuations induced in very small (r10–3 ) interstellar grains by the absorption of photons from the ultra-violet radiation field or by energy released on molecule formation are shown to lead to significant gas heating due to thermal desorption of condensed atoms or molecules. For clouds with N(H)=1–10×1020 cm–2, heating rates due to this process are comparable to direct heating by cosmic rays or grain photoelectrons.  相似文献   

12.
The physical conditions under which suprathermal grains can be produced when they are accelerated by radiation pressure against the drag of ambient gas are investigated. It is found that dust grains may attain a terminal velocityU (=105 cm s–1) in most regions and move out of the midplane of the source region about a distance |z|100 pc. Once clear of the main gas/dust layer the dust grains (a3×10–6 cm) may then attain suprathermal energy (V g 3×108 cm s–1) by the Fermi process.  相似文献   

13.
This work is divided into 13 sections and 2 appendices, and aims to elucidate the accretion mechanism, which operates via image-theory forces, whenever two interstellar dust grains come close together. Section 1 is an introduction. Section 2 proposes that the distribution of interstellar grains be taken asn(r) r –4 to avoid distortion of the 3K microwave background by radiation from spinning grains. Section 3 examines each of three types of image force accretion processes, finding them to be dominant compared to radiation or gravitational forces by at least a factor of 1019. Section 4 states that only grains made of conducting material (e.g., graphite, ice, iron) are involved in image theory. Section 5 presents reasons for believing that two grains should coalesce on impact. Section 6 examines the motion of charged interstellar grains in Hi and Hii regions. Section 7 demonstrates, by way of four examples involving dust grains ofr=10–7 cm up tor=10–4 cm, that the image effects on conducting grains are not trivial, and that the dynamics involved is not to be compared at all with elementary Coulomb interaction of two changes. Section 8 concludes that accretion with not take place in Hi clouds if thermal (equipartition) velocities prevail among the dust particles. section 9 examines grain interactions in Hii regions: here, following an argument due to Spitzer, consideration is given to the case of a population of dust grains all streaming in the direction of the local magnetic field B at velocities of order 0.1 km s–1. It is shown that accretion takes place effectively, leading to the formation of interstellar grit, meaning grains of mass 10–8 to 10–7 gm, radius 0.1 mm; and leaving also a population ofr10–6 cm grains, which are observed in polarization and extinction measurements. The existence of the latter is now a deduction and not an ad hoc postulate, as previously, and implies a distribution of the general formn(r) r mean –3 , in approximate agreement with that of Section 2. Section 10 considers the accretion mechanism as a cascade process. Section 11 shows that the existence of grains in space ofr 10–6 cm rules out an origin in supernova or galactic explosions, and supports a passive origin, perhaps in red giants or Mira variables. Section 12 discusses the implications of the results found for polarization observations and cosmogony, the latter being given a new foundation in which planets of different composition form automatically from a solar nebula. Section 13 is a conclusion.  相似文献   

14.
Charged dust grains of radiia≃3×10−6∼3×10−5 cm could be a help in understanding high energy particles in extensive air showers (EAS). It is suggested that the dust grains in the intergalactic medium may attain relatistic energy (≥1020 eV), and may be responsible for the apparent ‘bump’ in the energy spectrum. The relativistic and non-relativistic dust grains may help to understand the anomalies in the energy spectrum as regards the slope and intensity.  相似文献   

15.
The Infra-Red Astronomical Satellite (IRAS) observations of the zodiacal dust emission are used to fit the dust grain composition and distribution in the ecliptical plane. We obtain a good fit to the data for a density distribution of black-body grains given by p = pr 0.66/log(1.7r/R) for r < 0.87R and r < 3oR  相似文献   

16.
The diffuse far UV radiation ( 1350–1480 Å) observed in the sky region ofl II180°, 0°b II40° is analyzed in connection with the distributions of stars and dust grains as well as with optical properties of grains. Its intensity (starlight+scattered light) is about 6×10–7 erg cm–2 sec–1 sr–1 Å–1 in the direction ofb II0° andl II180°. The latitude dependence of the intensity is in approximate agreement with the plane parallel slab model of the galaxy with a reasonable set of parameters. The interstellar scattering gives an albedo close to unity and forward phase function of about 0.6, which are not inconsistent with the model of interstellar grains of Wickramasinghe. The upper limit of the extragalactic UV is 2×10–8 erg cm–2 sec–1 sr–1 Å–1 in the same region of wave-length.  相似文献   

17.
A self-consistent solution of the dynamical and thermal structure of an H2O-dominated, two-phase, dusty-gas cometary atmosphere has been obtained by solving the simultaneous set of differential equations representing conservation of number density, momentum and energy together with the transfer of solar radiation in the streams responsible for the major photolytic processes and the heating of the nucleus. The validity of the model is restricted to the collision-dominated region where all the gas species are assumed to attain a common velocity and common temperature. Two models are considered for the transfer of solar radiation through the circum-nuclear dust halo. In the first only the direct extinction by the dust is considered. In the second, the finding of some recent models, that the diffuse radiation field due to multiple scattering by the dust halo more or less compensates for radiation removed by direct absorption when the optical depth is near unity, is approximated by neglecting the attenuation of the radiation by the dust altogether.As has been shown earlier, the presence of dust results in a transonic solution, and it is obtained by a two-step iterative procedure which makes use of the asymptotic behaviour of the radiation fields sufficiently far from the nucleus and a regularity condition at the sonic point.The calculations were performed for a medium sized comet (R n =2.5 km) having a dust to gas production rate ratio of unity, at a heliocentric distance of 1 AU. The dust grains were assumed to be of the same radius (1), of low density (1g cm–3) and be strongly absorbing (having the optical properties of magnetite).The main effect of the dust on the cometary atmosphere is dynamic. While the dust-gas coupling persists to about 20R n , the strong throat effect of the dust friction on the gas causes the latter to go supersonic quite rapidly. Consequently the sub-sonic region around the nucleus is very thin, varying between 45 and 85m in the two models considered. On the other hand, while this highly absorbing dust has a temperature substantially above that of the gas in the inner coma, heat exchange between them does not significantly change the temperature profile of the gas. This is because of the predominance of the expansion cooling, and even more importantly, the IR-cooling by H2O, in the inner coma. Consequently, the gas temperature goes through a strong inversion, as in the dust-free case, achieving a temperature as low as about 6K within about 50km of the nucleus, before increasing to about 700K atr=104km, due to the high efficiency of photolytic heating over the cooling process in the outer coma. The Mach number achieves a maximum value of about 10 at the distance of the temperature minimum, thereafter steadily decreasing to a value of about 2.5 atr104km.It is shown that while the dust attenuation has a strong effect on the production rate of H2O, it also has an interesting effect on the electron density profile. It increases the electron density in the inner coma over the unattenuated case, while at the same time, decreasing it in the outer coma. In conclusion, the limitations of the present model and the necessity to extend it using a multi-fluid approach are discussed.  相似文献   

18.
It is shown that an appreciable flux of positrons below a few MeV in the cosmic radiation could arise from the decay of cobalt nuclei in the decay chain56Ni56Co56Fe, which occurs in the silicon burning shells of supernovae just after their ejection at relativistic velocities. The equilibrium spectrum of positrons in the interstellar space has been calculated on the assumption that the observed abundance of iron nuclei in the cosmic radiation is the result of the above process. It is found that the observation below about 10 MeV can be well explained with a moderate acceleration of the positrons in the expanding envelope of supernovae prior to their propagation in the interstellar space. The total56Ni content in the shells of supernova necessary to account for the observed positrons is in agreement with that required to explain the peak luminosity during the supernova outburst. Since this model deals with positrons created at the time of injection of cosmic rays into the interstellar space, it becomes possible to study the shape of the injection spectrum of cosmic rays.On leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

19.
A rotating Supermassive Magnetized Disk is proposed as a model for all the violent phenomena occurring in the nuclei of galaxies, in the form of quasars, Lacertids, radio galaxies, Seyferts, exploding galaxies, etc. The cold disk feeds a fast-rotating supermassive core (some 103 Schwarzschild radii in extent), which emits (1) an unsteady thermal wind of filamentary geometry, (2) Low-Frequency magnetic Waves, and (3) relativistic electrons and positrons. The latter reach high -factors by phase-riding the LFWs, emit synchro-Compton radiation on crossing scattered waves (from -ray energies down to radio frequencies), and are eventually focused into two antipodal relativistic beams by their frozen-in toroidal magnetic field. Torsional oscillations between the core and disk give rise to a pulsed injection, and a breathing double-onion shape of the LFW windzone can explain the superluminal jetlike appearance. A big nuclear explosion ends each duty cycle, but many smaller explosions prevent the settling core from collapsing. In this model, the helium production of galactic centres is comparable to the observed cosmic helium.  相似文献   

20.
The growth rate of the relativistic firehose instability is an order of magnitude smaller, near marginal instability, for plasmas with particle energy spectraN(E)dEE –2.5dE than for those withN(E)dEE –3dE. If cosmic rays are accelerated impulsively in limited regions, with initially flat spectra, the sudden increase in the firehose growth rate could lead to release of the particles when the spectrum has steepened beyond exponent 2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号