首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectroscopic confirmation of redshifts predicted by gravitational lensing   总被引:1,自引:0,他引:1  
We present deep spectroscopic measurements of 18 distant field galaxies identified as gravitationally lensed arcs in a Hubble Space Telescope image of the cluster Abell 2218. Redshifts of these objects were predicted by Kneib et al. using a lensing analysis constrained by the properties of two bright arcs of known redshift and other multiply imaged sources. The new spectroscopic identifications were obtained using long exposures with the LDSS-2 spectrograph on the William Herschel Telescope, and demonstrate the capability of that instrument to reach new limits, R ≃24; the lensing magnification implies true source magnitudes as faint as R ≃25. Statistically, our measured redshifts are in excellent agreement with those predicted from Kneib et al.'s lensing analysis, and this gives considerable support to the redshift distribution derived by the lensing inversion method for the more numerous and fainter arclets extending to R ≃25.5. We explore the remaining uncertainties arising from both the mass distribution in the central regions of Abell 2218 and the inversion method itself, and conclude that the mean redshift of the faint field population at R ≃25.5 ( B ∼26–27) is low, 〈 z 〉=0.8–1. We discuss this result in the context of redshift distributions estimated from multicolour photometry. Although such comparisons are not straightforward, we suggest that photometric techniques may achieve a reasonable level of agreement, particularly when they include near-infrared photometry with discriminatory capabilities in the 1< z <2 range.  相似文献   

2.
Rich and massive clusters of galaxies at intermediate redshift are capable of magnifying and distorting the images of background galaxies. A comparison of different mass estimators among these clusters can provide useful information about the distribution and composition of cluster matter and its dynamical evolution. Using the hitherto largest sample of lensing clusters drawn from the literature, we compare the gravitating masses of clusters derived from the strong/weak gravitational lensing phenomena, from the X-ray measurements based on the assumption of hydrostatic equilibrium, and from the conventional isothermal sphere model for the dark matter profile characterized by the velocity dispersion and core radius of galaxy distributions in clusters. While there is excellent agreement between the weak lensing, X-ray and isothermal sphere model-determined cluster masses, these methods are likely to underestimate the gravitating masses enclosed within the central cores of clusters by a factor of 2–4 as compared with the strong lensing results. Such a mass discrepancy has probably arisen from the inappropriate applications of the weak lensing technique and the hydrostatic equilibrium hypothesis to the central regions of clusters, as well as from assuming an unreasonably large core radius for both luminous and dark matter profiles. Nevertheless, it is pointed out that these cluster mass estimators may be safely applied on scales greater than the core sizes. Namely, the overall clusters of galaxies at intermediate redshift can still be regarded as the dynamically relaxed systems, in which the velocity dispersion of galaxies and the temperature of X-ray emitting gas are good indicators of the underlying gravitational potentials of clusters.  相似文献   

3.
We report the discovery of 4 strong gravitational lensing systems by visual inspections of the Sloan Digital Sky Survey images of galaxy clusters in Data Release 6 (SDSS DR6). Two of the four systems show Einstein rings while the others show tangen-tial giant arcs. These arcs or rings have large angular separations ( 8") from the bright central galaxies and show bluer color compared with the red cluster galaxies. In addition,we found 5 probable and 4 possible lenses by galaxy clusters.  相似文献   

4.
Galaxy harassment has been proposed as a physical process that morphologically transforms low surface density disc galaxies into dwarf elliptical galaxies in clusters. It has been used to link the observed very different morphology of distant cluster galaxies (relatively more blue galaxies with 'disturbed' morphologies) with the relatively large numbers of dwarf elliptical galaxies found in nearby clusters. One prediction of the harassment model is that the remnant galaxies should lie on low surface brightness tidal streams or arcs. We demonstrate in this paper that we have an analysis method that is sensitive to the detection of arcs down to a surface brightness of 29 B μ and we then use this method to search for arcs around 46 Virgo cluster dwarf elliptical galaxies. We find no evidence for tidal streams or arcs and consequently no evidence for galaxy harassment as a viable explanation for the relatively large numbers of dwarf galaxies found in the Virgo cluster.  相似文献   

5.
We readdress the outstanding cluster mass discrepancy between strong and weak gravitational lensing techniques utilizing updated data of both giant arcs and weak lensing measurements from the literature.We find that the systematically higher values of cluster masses revealed by strong lensing can be attributed to the oversimplification of the lensing model when estimating the cluster mass enclosed within the giant arcs.This arises because inhomogeneities and substructures in the central cores of clusters may invalidate the spherical symmetry assumption used widely in previous applications.When a more realistic modeling of the arcs is used,then the masses by strong lensing agree fairly well with those given by weak lensing when both are extrapolated to the same cluster regions.We conclude that as of now no significant discrepancy has been found among different cluster mass estimators including optical galaxies,X-ray gas and lensing.  相似文献   

6.
Cluster lenses     
Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es)—understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects—probing the properties of the background lensed galaxy population—which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe—as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.  相似文献   

7.
We use ray-tracing through the Millennium simulation to study how secondary matter structures along the line-of-sight and the stellar mass in galaxies affect strong cluster lensing, in particular the cross-section for giant arcs. Furthermore, we investigate the distribution of the cluster Einstein radii and the radial distribution of giant arcs. We find that additional structures along the line-of-sight increase the strong-lensing optical depth by  ∼10–25 per cent  , while strong-lensing cross-sections of individual clusters are frequently boosted by as much as  ∼50 per cent  . The enhancement is mainly due to structures that are not correlated with the lens. Cluster galaxies increase the strong-lensing optical depth by up to a factor of 2, while interloping galaxies are not significant. We conclude that these effects need to be taken into account for predictions of the giant arc abundance, but they are not large enough to fully account for the reported discrepancy between predicted and observed abundances.
Furthermore, we find that Einstein radii defined via the area enclosed by the critical curve are 10–30 per cent larger than those defined via radial surface mass density profiles. The contributions of radial and tangential arcs to the radial distribution of arcs can be clearly distinguished. The radial distribution of tangential arcs is very broad and extends out to several Einstein radii. Thus, individual arcs are not well suited for constraining Einstein radii.  相似文献   

8.
We present the results of a set of numerical simulations evaluating the effect of cluster galaxies on arc statistics.
We perform a first set of gravitational lensing simulations using three independent projections for each of nine different galaxy clusters obtained from N -body simulations. The simulated clusters consist of dark matter only. We add a population of galaxies to each cluster, mimicking the observed luminosity function and the spatial galaxy distribution, and repeat the lensing simulations including the effects of cluster galaxies, which themselves act as individual lenses. Each galaxy is represented by a spherical Navarro, Frenk & White density profile.
We consider the statistical distributions of the properties of the gravitational arcs produced by our clusters with and without galaxies. We find that the cluster galaxies do not introduce perturbations strong enough to significantly change the number of arcs and the distributions of lengths, widths, curvature radii and length-to-width ratios of long arcs. We find some changes to the distribution of short-arc properties in the presence of cluster galaxies. The differences appear in the distribution of curvature radii for arc lengths smaller than 12 arcsec, while the distributions of lengths, widths and length-to-width ratios are significantly changed only for arcs shorter than 4 arcsec.  相似文献   

9.
10.
Some proposals have been made in recent years that extremely low-frequency cosmic gravitational radiation with wavelengths of the order megaparsecs and larger and with the cosmological energy density may be able to explain the virial mass discrepancy in at least some systems of galaxies. The question is rediscussed here with the result that — for all conceivable spectral densities — the gravitational wave influence on the propagation of light from a galaxy cluster does not solve redshift problem for rich and distant clusters — at least if waves with an energy density not exceeding the critical cosmological density are considered.  相似文献   

11.
赵君亮 《天文学进展》2007,25(3):206-214
对星系团各类分层效应的有关问题做了概要的评述,包括成员星系在位置空间和(或)速度空间中的形态分层、光度(质量)分层和元素丰度分层的表现形式和探测途径,分层效应可能的形成机制及其对星系和星系团的结构和演化的影响。  相似文献   

12.
对于星系际弥散恒星的研究是分别从观测、数值模拟和半解析模型这三个方面进行的.现在已经在邻近星系团及中低红移处观测到弥散恒星,甚至在Virgo及Coma星系团中观测到了单个的弥散恒星.观测数据的积累使得人们能够从统计上了解星系际弥散恒星的性质.研究表明星系际弥散恒星围绕着星系团势阱中心呈椭球状对称分布,其在星系团恒星总质...  相似文献   

13.
Galaxy clusters present unique advantages for cosmological study.Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of the lensing clusters lie between 0.1 and 0.6,and the redshift range of their arcs is from 0.4 to 4.9.These clusters are selected carefully from strong gravitational lensing systems which have both X-ray satellite observations and optical giant luminous arcs with known redshifts.Giant arcs usually appear in th...  相似文献   

14.
We identify new strong lensing clusters of galaxies from the Sloan Digital Sky Survey III (SDSS DR8) by visually inspecting color images of a large sample of clusters of galaxies. We find 68 new clusters showing giant arcs in addition to 30 known lensing systems. Among 68 cases, 13 clusters are almost certain lensing systems with tangential giant arcs, 22 clusters are probable and 31 clusters are possible lensing systems. We also find two exotic systems with blue rings. The giant arcs have angular separatio...  相似文献   

15.
Highly magnified lensed galaxies allow us to probe the morphological and spectroscopic properties of high-redshift stellar systems in great detail. However, such objects are rare, and there are only a handful of lensed galaxies that are bright enough for a high-resolution spectroscopic study with current instrumentation. We report the discovery of a new massive lensing cluster, SDSS J120923.7+264047, at z = 0.558. Present around the cluster core, at angular distances of up to ∼40 arcsec, are many arcs and arc candidates, presumably due to lensing of background galaxies by the cluster gravitational potential. One of the arcs, 21 arcsec long, has an r -band magnitude of 20, making it one of the brightest known lensed galaxies. We obtained a low-resolution spectrum of this galaxy, using the Keck-I telescope, and found it is at redshift of z = 1.018.  相似文献   

16.
We have obtained U - and R -band observations of the depletion of background galaxies resulting from the gravitational lensing of the galaxy cluster CL0024+1654 ( z =0.39). The radial depletion curves show a significant depletion in both bands within a radius of 40–70 arcsec from the cluster centre. This is the first time that depletion is detected in the U band. This gives independent evidence for a break in the slope of the U -band luminosity function at faint magnitudes. The radially averaged R -band depletion curve is broader and deeper than in the U band. The differences can be attributed to the wavelength dependence of the slope of the luminosity function and to the different redshift distribution of the objects probed in the two bands. We estimate the Einstein radius, r E, of a singular isothermal sphere lens model using maximum-likelihood analysis. Adopting a slope of the number counts of α =0.2 and using the background density found beyond r =150 arcsec, we find r E=17±3 and 25±3 arcsec in the U and R bands, respectively. When combined with the redshift of the single background galaxy at z =1.675 seen as four giant arcs around 30 arcsec from the cluster centre, these values indicate a median redshift in the range 〈 z S〉≈0.7 to 1.1 for the U AB≥24 mag and R AB≥24 mag populations.  相似文献   

17.
We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parametrizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White, we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r 2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe,     , and measure a positive cosmological constant,     . Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.  相似文献   

18.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

19.
The nature of the starburst phenomenon in galaxies is investigated using a narrow-band colour system designed to study colour evolution in distant clusters. Work on zero redshift, luminous far-IR galaxies, calibrated by starburst models, demonstrates the usefulness of this colour system in isolating starburst from normal star-forming colours, and also demonstrates a strong correlation with far-IR colours despite reddening effects. The same colour system applied to distant clusters finds that a majority of the faint blue cluster population are starburst dwarf galaxies, probably the progenitors of the current population of dwarf ellipticals in nearby clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev–Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7?0.9. We used the data of optical observations with the Russian–Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39?34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev–Zeldovich sources at high redshifts, z ≈ 0.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号