首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2011. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum, there appear to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum, then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as eight months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with dynamo wave mechanisms but not consistent with current flux transport dynamo models for the equatorward drift of the sunspot zones.  相似文献   

2.
We consider a conventional stellar  α2ω  -dynamo with dynamo generators localized in two spherical shells separated by a passive layer. The signs of the α-effect as well as rotational shear in the dynamo active layers can be chosen to give dynamo waves that propagate in opposite directions (poleward and equatorward) if the layers are considered separately in the framework of the Parker migratory dynamo. In a sequence of numerical experiments we show that the variety of dynamo-generated magnetic configurations in the system under discussion is quite rich. We identify the possibility of almost independent dynamo waves existing in the two layers as well as enslavement of one layer by the other, and of activity waves generated by a joint action of the two layers. We suggest some qualitative explanations of the behaviour and discuss also the limited nature of these explanations. This variety of phenomena suggests previously underexploited freedoms to understand how predictions of dynamo theory may accommodate the observed solar and stellar activity phenomenology.  相似文献   

3.
S. Latushko 《Solar physics》1996,163(2):241-247
An analysis is made of mean latitudinal profiles of the meridional drift of the large-scale solar magnetic fields. The previously detected equatorward migration of the drift pattern in the course of a cycle is confirmed. Evidence for the existence of a near-equatorial narrow zone ±7° with an equatorward drift with a rate of about 1 m s-1 is obtained. The study revealed a significant difference in shapes and variations of average drift profiles for the large-scale magnetic field and small magnetic features (Komm, Howard, and Harvey, 1993).  相似文献   

4.
It is shown that the magnetic field of an enhanced dynamo current in the dayside boundary layer and of the connected circuit can quantitatively account for the equatorward shift of the cusp region which is observed during the expansive phase of magnetospheric substorms.  相似文献   

5.
It is demonstrated that a turbulent distribution of small amplitude velocity waves gives rise to kinematic dynamo activity on its own in an infinite medium. As the wave speed increases, the intensity of the waves has to increase in order to support dynamo regeneration. The theory given is statisticallyexact, but in view of the complexity of the resulting equations, the answers presented are for the long-wavelength (i.e. large-scale) magnetic field. In view of the fact that most astrophysical objects apparently contain turbulent wave motions, the present calculation is indicative of the extent to which turbulent dynamo activity may be physically importat in such objects.  相似文献   

6.
The direction of motion of the auroral forms in several sectors of the auroral oval during substorms is studied. The creation phase is characterized by the equatorward displacement of the luminous region in evening (15–21 LT) and in day (09–15 LT) hours, while individual forms in the luminous region drift mainly poleward with a mean velocity of 230 m/sec in day hours and equatorward with the mean velocity of 230 m/sec in evening hours. The equatorial shift of the luminous region correlates well with the BZ-component of the interplanetary magnetic field. The onset of the displacement coincides with the southward BZ-rotation and is accompanied by auroral intensity increase for about 10–20 min.During the expansive and recovery phases the day auroras drift poleward with mean velocities of 330 and 300 m/sec, respectively. In the evening sector the individual auroral forms drift both poleward and equatorward during the expansive phase and drift mainly towards the pole during the recovery phase with a mean velocity of 200 m/sec. In the morning sector characteristics of the motion of the individual auroral forms are more complicated than in the other sectors. The well defined shifts of the luminous region are not discovered. The possible relation between the motions of individual auroral forms with the magnetosphere convection is discussed.  相似文献   

7.
Starting from the present version of the Riga dynamo experiment with its rotating magnetic eigenfield dominated by a single frequency we ask for those modifications of this set‐up that would allow for a non‐trivial magnetic field behaviour in the saturation regime. Assuming an increased ratio of azimuthal to axial flow velocity, we obtain energy oscillations with a frequency below the eigenfrequency of the magnetic field. These new oscillations are identified as magneto‐inertial waves that result from a slight imbalance of Lorentz and inertial forces. Increasing the azimuthal velocity further, or increasing the total magnetic Reynolds number, we find transitions to a chaotic behaviour of the dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We define for observational study two subsets of all polar zone filaments, which we call polemost filaments and polar filament bands. The behavior of the mean latitude of both the polemost filaments and the polar filament bands is examined and compared with the evolution of the polar magnetic field over an activity cycle as recently distilled by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson full-disk magnetograms. The magnetic data reveal that the polar magnetic fields are built up and maintained by the episodic arrival of discrete f-polarity regions that originate in active region latitudes and subsequently drift to the poles. After leaving the active-region latitudes, these unipolar f-polarity regions do not spread equatorward even though there is less net flux equatorward; this indicates that the f-polarity regions are carried poleward by a meridional flow, rather than by diffusion. The polar zone filaments are an independent tracer which confirms both the episodic polar field formation and the meridional flow. We find:
  1. The mean latitude of the polemost filaments tracks the boundary of the polar field cap and undergoes an equatorward dip during each arrival of additional polar field.
  2. Polar filament bands track the boundary latitudes of the unipolar regions, drifting poleward with the regions at about 10 m s-1.
  3. The Mt. Wilson magnetic data, combined with a simple model calculation, show that the filament drift expected from diffusion alone would be slower than observed, and in some cases would be equatorward rather than poleward.
  4. The observation that filaments drift poleward along with the magnetic regions shows that fields of both polarities are carried by the meridional flow, as would be expected, rather than only the f-polarity flux which dominates the strength. This leads to the prediction that in the mid-latitudes during intervals between the passage of f-polarity regions, both polarities are present in nearly equal amounts. This prediction is confirmed by the magnetic data.
  相似文献   

9.
The various modes of plasma turbulence waves (including MHD waves) are easily excited under cosmic circumstances. In this paper, if we consider that the celestial bodies rotate, there is a source term generated for the magnetic induced equation by the excited plasma turbulence waves. If we expand the turbulent field in the Fourier series and include rotation velocity, the dynamo equation for turbulent waves is obtained. We have also obtained the solutions of various wave forms corresponding to different rotation velocities and then we significantly discuss the magnetic fields in the Sun, planets, and other celestial bodies.  相似文献   

10.
Large-scale magnetic fields in galaxies are thought to be generated by a turbulent dynamo. However, the same turbulence also leads to a small-scale dynamo which generates magnetic noise at a more rapid rate. The efficiency of the large-scale dynamo depends on how this noise saturates. We examine this issue, taking into account ambipolar drift, which obtains in a galaxy with significant neutral gas. We argue as follows.
(i) The small-scale dynamo generated field does not fill the volume, but is concentrated into intermittent rope-like structures. The flux ropes are curved on the turbulent eddy scales. Their thickness is set by the diffusive scale determined by the effective ambipolar diffusion.
(ii) For a largely neutral galactic gas, the small-scale dynamo saturates, as a result of inefficient random stretching, when the peak field in a flux rope has grown to a few times the equipartition value.
(iii) The average energy density in the saturated small-scale field is subequipartition, since it does not fill the volume.
(iv) Such fields neither drain significant energy from the turbulence nor convert eddy motion of the turbulence on the outer scale into wave-like motion. The diffusive effects needed for the large-scale dynamo operation are then preserved until the large-scale field itself grows to near equipartition levels.  相似文献   

11.
We consider non-linear transport and drift processes caused by an inhomogeneous magnetic field in a turbulent fluid. The coefficients of magnetic diffusivity and drift velocity are calculated by making use of the second-order correlation approximation. Transport processes in the presence of a sufficiently strong magnetic field become anisotropic with larger diffusion rate and turbulent electrical resistivity across the field than along the field. Non-linear effects also lead to a drift of the magnetic field away from the regions with a higher magnetic energy.  相似文献   

12.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

13.
Turbulent plane‐shear flow is found to show same basic effects of mean‐fieldMHD as rotating turbulence. In particular, the mean electromotive force (EMF) includes highly anisotropic turbulent diffusion and alpha‐effect. Only magnetic diffusion remains for spatially‐uniform turbulence. The question is addressed whether in this case a self‐excitation of a magnetic field by so‐called sher‐current dynamo is possible and the quasilinear theory provides a negative answer. The streamaligned component of the EMF has the sign opposite to that required for dynamo. If, however, the turbulence is not uniform across the flow direction then a dynamo‐active α ‐effect emerges. The critical magnetic Reynolds number for the alpha‐shear dynamo is estimated to be slightly above ten. Possibilities for cross‐checking theoretical predictions with MHD experiments are discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Properties of a latitude zonal component of the large-scale solar magnetic field are analyzed on the basis of H charts for 1905–1982. Poleward migration of prominences is used to determine the time of reversal of the polar magnetic field for 1870–1905. It is shown that in each hemisphere the polar, middle latitude and equatorial zones of the predominant polarity of large-scale magnetic field can be detected by calculating the average latitude of prominence samples referred to one boundary of the large-scale magnetic field. The cases of a single and three-fold polar magnetic field reversal are investigated. It is shown that prominence samples referred to one boundary of the large-scale magnetic field do not have any regular equatorward drift. They manifest a poleward migration with a variable velocity up to 30 m s-1 depending on the phase of the cycle. The direction of migration is the same for both low-latitude and high-latitude zones. Two different time intervals of poleward migration are found. One lasts from the beginning of the cycle to the time of polar magnetic field reversal and the other lasts from the time of reversal to the time of minimum activity. The velocity of poleward migration of prominences during the first period is from 5 m s-1 to 30 m s-1 and the second period is devoid of regular latitude drift.  相似文献   

15.
We investigated the generation of dynamo waves in the solar convection zone through a numerical simulation. We integrated the axisymmetric α–Ω kinematic dynamo equations in a spherical geometry, where the α- and Ω-profiles depend on the spatial coordinates. The model results show that the fundamental parameter that determines the behavior of the system is the product between the characteristic intensities of the α and Ω contributions. In particular, we found three different regimes in which the system exhibits different behaviors: a regime without a dynamo effect, one with an exponential amplification of the magnetic field, and one with dynamo waves.  相似文献   

16.
The behavior of dynamo waves in a two-layer medium is investigated in terms of the Parker dynamo model. The solar cycle duration is shown to depend on the ratio of turbulent diffusivities in the layers. Meridional circulation has been incorporated into the Parker system. An increase in the intensity of meridional flows is shown to decelerate the propagation of dynamo waves. The minimum of solar magnetic activity can occur not only in the case of intense meridional circulation in both layers but also when a difference in physical characteristics arises between the layers and the meridional flows are moderate.  相似文献   

17.
A kinematic -dynamo model of magnetic field generation in a thin convection shell with nonuniform helicity for large dynamo numbers is considered in the framework of Parker's migratory dynamo. The asymptotic solution obtained of equations governing the magnetic field has the form of an anharmonic travelling dynamo wave. This wave propagates over most latitudes of the solar hemisphere from high latitudes to the equator, and the amplitude of the magnetic field first increases and then decreases with propagation. Over the subpolar latitudes, the dynamo wave reverses; there the dynamo wave propagates polewards and decays with latitude. The half-width of the maximum of the magnetic field localisation and the phase velocity of the dynamo wave are calculated. Butterfly diagrams are plotted and analysed and these show that even a simple model may reveal some properties of the solar magnetic fields.  相似文献   

18.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

19.
Jan Kuijpers 《Solar physics》1975,44(1):173-193
The possible generation of intermediate drift bursts in type IV dm continua through coupling between whistler waves, traveling along the magnetic field, and Langmuir waves, excited by a loss-cone instability in the source region, is elaborated. We investigate the generation, propagation and coupling of whistlers. It is shown that the superposition of an isotropic background plasma of 106K and a loss-cone distribution of fast electrons is unstable for whistler waves if the loss-cone aperture 2α is sufficiently large (sec α?4); a typical value of the excited frequencies is 0.1 ω ce (ω ce is the angular electron cyclotron frequency). The whistlers can travel upwards through the source region of the continuum along the magnetic field direction with velocities of 21.5–28 v A (v A is the Alfvén velocity). Coupling of the whistlers with Langmuir waves into escaping electromagnetic waves can lead to the observed intermediate drift bursts, if the Langmuir waves have phase velocities around the velocity of light. In our model the instantaneous bandwith of the fibers corresponds to a frequency of 0.1–0.5 ω ce and leads to estimates of the magnetic field strength in the source region. These estimates are in good agreement with those derived from the observed drift rate, corresponding to 21.5–28 v A, if we use a simple hydrostatic density model.  相似文献   

20.
The longitudinal changes in drift velocity and bounce period are obtained using two theorems on magnetic flux conservation. As a consequence radial diffusion due to pitch-angle scattering is derived. The use of the same analytical model enables the comparison of this process with radial diffusion due to compressions of the magnetosphere. The two processes are competitive for intermediate colatitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号