首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is a review of the geodetic monitoring of the horizontal component of recent crustal movements (RCMs) in Kamchatka and the Commander Islands for the period 1979–2007. Examples are provided of the RCMs recorded in Kamchatka and the Commander Islands for the period 1997–2007 by the Kamchatka regional GPS network (KAMNET) set up by workers at the Kamchatka Branch of the RAS Geophysical Service (KB GS RAS) in collaboration with the Institute of Volcanology and Seismology of the Far East Division of the Russian Academy of Sciences to study the geodynamic processes that are occurring in the Kamchatka subduction zone. An interpretation of examples of recorded RCMs is given.  相似文献   

2.
The Kamchatka Branch of the Geophysical Service (KB GS) of the Russian Academy of Sciences (RAS) has been observing the activity of Kamchatka volcanoes since 2000 in near real time using three methods: (1) seismicity monitoring (2) visual and video observations, and (3) satellite monitoring of thermal anomalies and ash discharges. The joint use of these data provides objective information on the state of the volcanoes from which to predict possible eruptions. During the period of time investigated, which culminated in the eruptions of March 10, 2003 to February 27, 2004 and January 12, 2005 to April 28, 2005, two active periods of Klyuchevskoi Volcano were identified. The results from our study of the first of these periods helped define an approximate scenario for the activity of the volcano before a summit eruption. The use of this experience in combination with an analysis of the literature enabled us to produce a successful short-term forecast of the January 2005 eruption.  相似文献   

3.
This work presents the project of the first stage of implementation of the integrated instrumental system of volcanic activity monitoring in Kamchatka and the Kuril Islands. The system of monitoring was designed for the purpose of ensuring public safety, aviation safety, and reducing economic losses caused by volcanic eruptions. The most active and dangerous volcanoes in Kamchatka (North and Avacha groups of volcanoes) and the Kuril Islands (volcanoes on the islands of Kunashir and Paramushir) are of first priority for monitoring. For this purpose, special observation points are planned to be installed on the volcanoes. The system of monitoring will include a complex of observations (broadband seismic station with a large dynamic range, tiltmeter, devices for gas, acoustic, and electromagnetic observations, and video camera). All the data will be passed to information processing centers in real time. New methods and algorithms of automatic and automated identification of the volcanic activity level and the probabilistic volcano hazard assessment have been developed.  相似文献   

4.
Early warning systems are becoming increasingly important in the modern world. These systems combine several components: predictive systems (For example, tsunami warning systems), earthquake early warning systems, emergency message services, and systems of seismic damage monitoring. Information about shaking intensity becomes especially important in the case of a strong earthquake occurrence. These data are necessary for planning emergency rescue operations, but they are difficult to collect in a natural disasters situation because of possible communication problems. Application of data on instrumental seismic intensity may make it possible to solve this problem. Early warning systems predicting seismic intensity distributions just after the occurrence of an earthquake have already been developed in many seismically active regions of the world. Such a system also needs to be implemented in Kamchatka, where the strongest earthquakes can produce extremely high values of strong motion acceleration. As a result of the development of a system for seismological observation in Kamchatka, a unified specialized system for collection, transmission, archiving, and processing of seismic information was created. Seismological observations in Kamchatka were significantly improved with the update of the tsunami warning service in 2006–2011. As a result, a network of strong motion stations is currently operating in Kamchatka and can serve as a basis for creating a quasi-real-time seismic early warning system under the auspices the Kamchatka Branch of the Geophysical Survey, Russian Academy of Sciences (KB GS RAS). It uses data from strong motion stations to estimate the instrumental seismic intensity in quasi-real-time mode and visualizes the results. During the operational period while the service is being intensively used in the framework of the Seismic Early Warning Reports Tsunami Warning Service in the Kamchatka and Sakhalin branches of the GS RAS for real-time warning of interested parties about the shaking intensities at observation points, the technology implemented in this service has proved highly informative. In total, 75 messages on instrumental intensity in various places of Kamchatka krai and the northern Kuril Islands (Paramushir Islands) have been sent since the service was commissioned at the end of 2014. The currently operating version of the service has proved its informativeness and applicability for special departments of the Emergency Situations Ministry. In addition, real-time warning has improved coordination between the departments of KB GS RAS, and the results of this system are being used in a number of basic research projects. Further development of the service is related to the creation of denser instrumental networks to record strong ground motions and the transition to automatic decision-making and message sending.  相似文献   

5.
This paper deals with the rapid estimation of the hazard posed by strong aftershocks for Kamchatka and the Kuril Islands based on the 12-hour aftershocks, namely, their rate, time of expectation, and maximum magnitude. The data set consists of main shocks and aftershocks as reported in the Catalog of the Kamchatka Branch of the Geophysical Survey, Russian Academy of Sciences (GS RAS) for 1968–2016. We used both the Gutenberg–Richter relation and the Omori–Utsu law to find that the aftershock rates in two time intervals are connected by a relationship of proportionality, with the constant of proportionality being independent of the lowest magnitude of these earthquakes. With this property in mind, we calculated the constants of proportionality for estimating the rate of aftershocks with a magnitude above threshold values based on the data for the first 12 hours after the main shock. We have derived easily remembered rules for estimating the aftershock rates that can be expected for 5 days and for 1 month with magnitudes above a fixed value based on the 12-hour aftershock observations. We also derived empirical regression relations to estimate the magnitude of the largest aftershock that can be expected to occur during 1 year after the main shock and the time of the last aftershock to occur whose magnitude is 5.2 or greater.  相似文献   

6.
The KamIn information system (IS) created at the Kamchatka Branch of GS RAS to collect, store, and preprocess data on the wave perturbations in the atmosphere is described. The KamIn IS observation system and infrastructure are described in detail; they make it possible to select infrasonic signals that occur during volcanic eruptions on Kamchatka and in the northern Kurile Islands both in the operational and regular mode. The results of the IS performance in 2010–2016 are summarized.  相似文献   

7.
We consider the results of the 19730–2008 aerial photogeodetic surveys conducted in the famous Geyser Valley of Kamchatka by the Institute of Volcanology (IV) of the Far East Division (FED) of the Russian Academy of Sciences (RAS), in 1973–1993, and by its successor, the Institute of Volcanology and Seismology (IV&S) FED RAS, in 2007–2008, in cooperation with the Chair of Photogrammetry at the Novosibirsk Institute of Engineers in Geodesy, Aerial Photograph Survey and Cartography (to be referred to here by the Russian abbreviation NIIGAiK), in 1973–1985. The aerial survey performed by the IV following Typhoon Elsa in October 1981 identified and recorded the typhoon-induced landslide that was the first to occur during the observation period in the east side of the valley. The measured area of landslide deposits is 28600 m 2 and its volume is 80000 m3. An analysis of materials resulting from the July 12, 2007 aerial photograph survey was the basis for an objective evaluation of the impact of the June 3, 2007 catastrophic event in the Geyser Valley, for determining the qualitative and quantitative characteristics of the new landforms, and for a long-term forecast of future hazardous events and processes. It was concluded that the hazardous natural events and processes that have occurred in the past will undoubtedly occur in the future as well. For this reason the Geyser Valley should be constantly monitored using highly accurate geodetic and remote sensing techniques.  相似文献   

8.
Kamchatka and the Kuril Islands (the Kuril-Kamchatka arc) make up the region of highest seismicity in Russia. About 80% of Russian earthquakes occur there, but a mere handful of three seismographic stations had been in operation until the autumn of 1957. On September 2, 1957, the Seismological Team of the Pacific Multidisciplinary Geologic and Geophysical Expedition, Institute of Physics of the Earth, USSR Acad. Sci. set foot on Iturup I, South Kuril Is. to do research for the International Geophysical Year program during 1957–1959, and began detailed seismological investigations in the Kuril-Kamchatka arc. During the subsequent 50 years, six organizations of the USSR/Russian Academy of Sciences conducted and developed this research in the Kuril Is. and Kamchatka. We review previous seismic expeditionary studies, which were carried out in other regions of the USSR from 1949 to 1957. The beginning of the detailed seismological investigations for the Kuril-Kamchatka arc is described, providing brief information on how this research was organized, as well as on the researchers involved, their lines of research, and the development of the extensive and comprehensive studies carried out in 1957–2007, along with some of their leading results. These results include the study of seismicity, its patterns, geodynamics, deep structure, upper mantle properties, the relationships between seismicity and volcanism, and successful long-term earthquake forecasts, among other subjects.  相似文献   

9.
In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian–Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.  相似文献   

10.
JORES, a portable recorder of geophysical parameters, developed at Kamchatka Branch of Geophysical Survey, Russian Academy of Sciences, is described. Its peculiarities are universality, compactness, low power consumption, and low cost.  相似文献   

11.
The relationship between solar and geomagnetic activities in connection with seismicity and volcanic eruptions on the globe during the period 1680–2010 is studied. The centennial cycles of terrestrial endogenous activity, related to solar and geomagnetic activity, are revealed; at the beginning of these cycles, solar cycles with small Wolf numbers were detected, while intensive seismic and volcanic activity was observed for several decades. A stable negative correlation between seismicity and volcanism, on the one hand, and solar and geomagnetic activity, on the other hand, were found. Experiments, which were simultaneously carried out at the Pushkov Institute of Geomagnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow oblast, and the Karymshina Complex Geophysical Observatory, Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences, have verified the suggestion that disturbances in the geomagnetic field and neutron generation occur during the early stages of strong earthquakes. It is supposed that the mechanism of primary generation of terrestrial neutrons is related to nuclear reactions in the Earth’s interior.  相似文献   

12.
Seven piston cores, 7–16 m long, taken between the Kuril Islands and Emperor Seamounts, have been dated using radiolarian and diatom extinction levels and correlated using volcanic ash layers. The average rate of deposition in the cores decreases from 6 cm/1000 years near the Kuril Trench to about 3.5 cm/1000 years near the seamounts. Dispersed volcanic ash is the main constituent of the cores and it comprises up to 80% of the sediments. The percentage of the ash in the sediments decreases eastward from the Kuril Islands as the rates of deposition decrease.The total thickness of the sediments in the same latitudinal belt also decreases eastward. The thickness of the sediment inferred from seismic data near the Kuril trench is about 600 m and rates of deposition are approximately 6 cm/1000 years in the Pleistocene cores. Sediment thickness near the seamounts is about 300 m, and rates of deposition are approximately 3 cm/1000 years in the Pleistocene cores. Extrapolated rates of deposition in these cores suggest that the age of the base of the sediment to the east of the Kurils is only about 10 m.y.The anomalously young age for the base of the sediments obtained by extrapolation of an assumed constant rate of deposition can be explained by Deep Sea Drilling Project data from the northwest Pacific. The sediment thickness at DSDP site 192 east of Kamchatka includes sediments from all the Cenozoic epochs except the Paleocene. Rates of deposition of sediment younger than Middle Miocene are an order of magnitude higher than those prior to this time. At DSDP sites east of Japan, either Late Miocene sediments lie directly on the basement, or sediments older than Late Miocene are very thin. Post-Middle Miocene sediments are composed primarily of glass shards. Thus, about 90% of the total thickness of sediments in the northwest Pacific is composed of sediments younger than Middle Miocene with volcanic ash as the main constituent. The volcanic ash results from the present phase of explosive volcanic activity which began in the Late Miocene in the northwest Pacific volcanic arcs.  相似文献   

13.
On April 21, 2006 an earthquake with a magnitude of M s = 7.7 named Olyutor struck the Koryak Autonomous Region. It was the strongest earthquake for the entire period of historical and instrumental observations. The coordinates of the epicenter were 60.91° N, 166.98° E; the hypocenter’s depth was 12 km. For the efficient study of the earthquake, a team of scientists of the Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences (RAS) was sent to the epicentral area. The article presents the results of studies of soil liquefaction in the settlement of Korf, which was the most affected during the Olyutor earthquake. The intensity of the earthquake in the settlement was 9 points. Numerous cracks in the soil were observed, sand volcanoes were formed, and there were numerous cases of sand and silt eruptions, subsidence, and flooding in the settlement. It was decided that the settlement was unfit for human habitation.  相似文献   

14.
Eight strong eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoi, Shiveluch, and Karymskii) and Chikurachki Volcano on Paramushir Island, North Kurils took place in 2007. In addition, an explosive event occurred on Mutnovskii Volcano and increased fumarole activity was recorded on Avacha and Gorelyi volcanoes in Kamchatka and Ebeko Volcano on Paramushir Island, North Kurils. Thanks to close cooperation with colleagues involved in the Kamchatkan Volcanic Eruption Response Team (KVERT) project from the Elizovo Airport Meteorological Center and volcanic ash advisory centers in Tokyo, Anchorage, and Washington (Tokyo VAAC, Anchorage VAAC, and Washington VAAC), all necessary precautions were taken for flight safety near Kamchatka.  相似文献   

15.
We consider the identification and diagnostics of active and potentially active volcanic features (regional zones of cinder cones, fields sheet volcanism, fields of concentrated multivent extrusive volcanism, calderas, and underwater eruption centers in the sea) in the Kuril-Kamchatka island arc and in the Commander Islands link of the Aleutian island arc, as well as the condition of this region as of late 2007. We have identified and examined three periods in the research of active and potentially active volcanic features in the region: the early (1697–1934), the new (1935–1962), and the most recent, still in progress (1963 until today). We provide a new definition of the term “active volcano,” which is scientifically well-grounded, for the first time here. We present modified (compared with those available until now) catalogs of active and potentially active volcanic forms in Kamchatka and the Kuril Islands. For typical multieruption volcanoes now in phase I (the active) and II (the passive) of their evolution, we provide long-term forecasts of the character and parameters of future eruptions and the associated volcanic hazard.  相似文献   

16.
In 2005, six major eruptions of four Kamchatka volcanoes (Bezymyannyi, Klyuchevskoy, Shiveluch, and Karymskii) occurred and the Avachinskii, Mutnovskii, and Gorelyi Kamchatka volcanoes and the Ebeko and Chikurachki volcanoes in northern Kurils were in a state of increased activity. Owing to a close collaboration between the KVERT project, Elizovo airport meteorological center, and volcanic ash advisory centers in Tokyo, Anchorage, and Washington (Tokyo, Anchorage, and Washington VAACs), all necessary measures for safe airplane flights near Kamchatka were taken and fatal accidents related to volcanic activity did not occur.  相似文献   

17.
The data from the seismic networks of the Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences are used for calculating the cross correlations of seismic noise for the stationary digital stations over 2013 and for radio telemetric stations (RTS) in the region of the Klyuchevskoy volcano over the period from January 1, 2009 to May 31, 2013. Four hundred and two correlations overall are calculated. The fundamental-mode group velocities of the Rayleigh waves are calculated in the periods ranging from 5 to 50 s. The calculations for the region of the Klyuchevskaya group of volcanoes are based on the RTS data and cover the periods from 2 to 8 s. The two-dimensional (2D) maps of group velocity distributions in different periods are constructed with the use of the algorithm of surface wave tomography (Barmin, 2001). The velocity sections for the selected Kamchatka regions are reconstructed by the dispersion curve inversion technique (Mordret, 2014). For each region, the structure of the Earth’s crust and upper mantle down to a depth of 50 km was obtained.  相似文献   

18.
The works on geodetic monitoring of the contemporary crustal motions (CCMs) in the region of the Kamchatka Peninsula and Komandor Islands for the 40-year history of instrumental observations are reviewed. The examples of CCM recording by the classical geodetic methods and, since 1996, by the Global Positioning System (GPS) are presented. The deployment of the regional network for GNSS observations by the Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences (KAMNET) made it possible to study the geodynamical processes at the junction of three major plates (Eurasian, North American, and Pacific) and smaller plates (Okhotsk and Bering). The interpretation of the examples of recorded CCMs is presented. The prospects of further development in the field of studying the geodynamics of the Koryak-Kamchatka region are outlined.  相似文献   

19.
This paper considers the chemical composition and classification of ground water at seven flowing wells and four springs using materials from the 2014 hydrogeochemical sampling and from continuous observations conducted by the Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences (KB GS RAS) in 1989–1999. We estimated the saturation of ground water discharges at individual vents with alumosilicate, carbonate, and sulfate secondary minerals, following the behavior of saturation over time. We have found that the ground water undergoes an increase in the saturation with secondary minerals during large earthquakes that produced shaking of intensity I = 5–6 on the MSK-64 scale. Such changes in the saturation of ground water with secondary minerals are less pronounced during the precursory periods before earthquake occurrence. We discuss desirable future developments of the observational system at wells and springs in order to look for new types of hydrogeochemical precursors to earthquakes.  相似文献   

20.
This paper presents results from a comprehensive analysis of geothermal and bathymetric surveys in the Brouton Bay on Simushir I. (Kuril Islands). High heat flow values through the bay bottom are typical of the present-day volcanoes at the Kuril island system. The results of the bathymetric survey were used to develop a digital map and a 3D model for the Bay basin and to detect an underwater volcanic dome. Comparison of geothermal and bathymetric data permitted delineation of the outer and inner ring faults that surround the atrio of Uratman Volcano. This evidence shows that the volcano is active at the present time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号