首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical characteristics. Precipitates containing iron and sulfide were present at much higher concentrations in native aquifer materials just upgradient of the PRB than in the PRB itself. Sulfur mass balance on core solids coupled with trends in ground water sulfate concentrations indicates that the average ground water flow after 20 months of PRB operation was approximately twenty fold less than the regional ground water velocity. Transport and reaction modeling of the aquifer PRB interface suggests that, at the calculated velocity, both iron and hydrogen could diffuse upgradient against ground water flow and thereby contribute to precipitation in the native aquifer materials. The initial hydraulic conductivity ( K ) of the native materials is less than that of the PRB and, given the observed precipitation in the upgradient native materials, it is likely that K reduction occurred upgradient to rather than within the PRB. Although not directly implicated, guar gum used during installation of the PRB is believed to have played a role in the precipitation and flow reduction processes by enhancing microbial activity.  相似文献   

2.
A field study of oxygen-enhanced biodegradation was carried out in a sandy iron-rich ground water system contaminated with gasoline hydrocarbons. Prior to the oxygen study, intrinsic microbial biodegradation in the contaminant plume had depleted dissolved oxygen and created anaerobic conditions. An oxygen diffusion system made of silicone polymer tubing was installed in an injection well within an oxygen delivery zone containing coarse highly permeable sand. During the study, this system delivered high dissolved oxygen (DO) levels (39 mg/L) to the ground water within a part of the plume. The ground water was sampled at a series of monitors in the test zone downgradient of the delivery well to determine the effect of oxygen on dissolved BTEX, ground water geochemistry, and microbially mediated biodegradation processes. The DO levels and Eh increased markedly at distances up to 2.3 m (7.5 feet) downgradient. Potential biofouling and iron precipitation effects did not clog the well screens or porous medium. The increased dissolved oxygen enhanced the population of aerobes while the activity of anaerobic sulfate-reducing bacteria and methanogens decreased. Based on concentration changes, the estimated total rate of BTEX biodegradation rose from 872 mg/day before enhancement to 2530 mg/day after 60 days of oxygen delivery. Increased oxygen flux to the test area could account for aerobic biodegradation of 1835 mg/day of the BTEX. The estimated rates of anaerobic biodegradation processes decreased based on the flux of sulfate, iron (II), and methane. Two contaminants in the plume, benzene and ethylbenzene, are not biodegraded as readily as toluene or xylenes under anaerobic conditions. Following oxygen enhancement, however, the benzene and ethylbenzene concentrations decreased about 98%, as did toluene and total xylenes.  相似文献   

3.
The combination of detailed multilevel ground water geochemistry samples, a natural-gradient tracer test, minislug tests, and a numerical flow and transport model was used to examine flow through a zero-valent iron permeable reactive barrier (PRB) installed to remove explosives from ground water. After 20 months of operation, the PRB continued to completely remove explosives from the ground water flowing through it. However, the data indicate that a portion of ground water flow was being diverted beneath the PRB. Ground water geochemistry was significantly altered by the PRB, and concentrations of some ions, including sulfate, carbonate, and calcium, were substantially reduced due to precipitation. Field data and numerical model results indicate that, after 20 months of operation, flow through the PRB was reduced to approximately one-third of its expected value.  相似文献   

4.
Unlined municipal waste stabilization lagoons are potential sources of ground-water contamination. Fourteen monitoring wells were installed around the Mc Ville, North Dakota lagoon, a site at which the impoundment is excavated into permeable sediments of an unconfined glacio-fluvial aquifer with a shallow water table. One cell at the site, Cell I, retains waste water continuously, while another, Cell II, is used for periodic overflow discharges from Cell I. Seepage through the bottom of Cell I passes through a strongly reducing organic sludge layer. Sulfate in the waste water is reduced to sulfide and possibly precipitated as sulfide minerals in or below this sludge layer. In the unsaturated or shallow saturated zone beneath the pond, the infiltrating waste water reduces ferric iron in iron oxide minerals to more soluble ferrous iron. Proximal down-gradient well analyses indicate high iron concentrations and very low sulfate levels. Downgradient wells near the lagoon have very high ammonium concentrations. The source of the ammonium is either rapid infiltration from Cell II or denitrification of the nitrate present in ground water upgradient from the lagoon. About 300 feet downgradient from Cell I, ammonium concentrations decline to near zero. The most likely mechanism for this decrease is cation  相似文献   

5.
A pilot-scale nutrient injection will (NIW) (4 m by 4 m by 1 m) was installed in the Borden Aquifer lo serve as a pulsed injection source of a potassium acetate solution for the stimulation of anaerobic microbial activity. The success of the flushing procedure was evaluated by monitoring the breakthrough of the acetate solution at several multilevel piezometers installed in the wall. Although some variation in the ground water velocity was observed with depth, the wall was flushed with reasonable uniformity after about six hours of injection and withdrawal, representing about one pore volume, Calculations bused on head level data collected during the flush, and on the solute breakthrough curves, indicated that about 90% of the flow induced by the pumping and injecting was confined to the permeable wall. These results show that a permeable wall injection system is a viable method of introducing solutes uniformly to a cross section of aquifer, with minimal perturbation of the natural flow system. In addition lo its importance for the biostimulation system tested in this project the flushing of permeable walls may have applications in other semi-passive remedial systems, such as the rejuvenation of reactive barriers.  相似文献   

6.
Wilkin RT  Puls RW  Sewell GW 《Ground water》2003,41(4):493-503
Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, North Carolina, and the Denver Federal Center, Colorado, sites. These ground water treatment systems use zero-valent iron filings (Peerless Metal Powders Inc.) to intercept and remediate chlorinated hydrocarbon compounds at the Denver Federal Center (funnel-and-gate system) and overlapping plumes of hexavalent chromium and chlorinated hydrocarbons at Elizabeth City (continuous wall system). Zero-valent iron at both sites is a long-term sink for carbon, sulfur, calcium, silicon, nitrogen, and magnesium. After about four years of operation, the average rates of inorganic carbon (IC) and sulfur (S) accumulation are 0.09 and 0.02 kg/m2/year, respectively, at Elizabeth City where upgradient waters contain <400 mg/L of total dissolved solids (TDS). At the Denver Federal Center site, upgradient ground water contains 1000 to 1200 mg/L TDS and rates of IC and S accumulation are as high as 2.16 and 0.80 kg/m2/year, respectively. At both sites, consistent patterns of spatially variable mineral precipitation and microbial activity are observed. Mineral precipitates and microbial biomass accumulate the fastest near the upgradient aquifer-Fe0 interface. Maximum net reductions in porosity due to the accumulation of sulfur and inorganic carbon precipitates range from 0.032 at Elizabeth City to 0.062 at the Denver Federal Center (gate 2) after about four years. Although pore space has been lost due the accumulation of authigenic components, neither site shows evidence of pervasive pore clogging after four years of operation.  相似文献   

7.
High-permeability layers for remediation of ground water; go wide, not deep   总被引:3,自引:0,他引:3  
A nitrate-reactive porous media layer comprising wood particles with very high hydraulic conductivity (K approximately 1 cm/s) was used to successfully treat nitrate in a shallow sand-and-gravel aquifer in southern Ontario. Nitrate concentrations of 1.3 to 14 mg/L as N in the aquifer were attenuated to <0.5 mg/L as N in the reactive layer. Borehole dilution testing indicated that ground water velocities in the reactive layer, although variable, averaged five times higher than in the surrounding aquifer, suggesting that the layer was capturing ground water flow from deeper in the aquifer. The use of high-K reactive media opens up the possibility of installing permeable reactive barriers as horizontal layers in the shallow water table zone that do not necessarily have to penetrate the full depth of a contaminant plume to be effective. Model simulations show that the depth of capture of a high-K layer increases as the layer width in the direction of flow increases. Shallower emplacement could decrease barrier costs at some sites.  相似文献   

8.
Measurements were made of the degree of trace metal pyritization (DTMP) and ancillary characteristics of four undisturbed sediment cores collected from the subtidal zone of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, a seriously polluted inland sea in northeastern China. The remarkably low concentrations of organic carbon (<0.72%) in these sediments likely constrained sulfate reduction rates, and the low concentrations of acid volatile sulfide (AVS) (<12.5 μmol g−1) limited the sequestration of metals through association with pyrite. The most consistent cause of inter-station differences and depth variations in the degree of pyritization was differences in pyrite metal concentrations rather than reactive metal concentrations. Reactive metal concentrations were in several cases negatively correlated with pore water concentrations, consistent with a dissolution/precipitation mechanism. The relationship between pore water metal concentrations and DTMPs was evidenced by a qualitative similarity of the inter-station variability of these same parameters.  相似文献   

9.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic.  相似文献   

10.
An in situ redox manipulation (ISRM) method for creating a permeable treatment zone in the subsurface has been developed at the laboratory bench and intermediate scales and deployed at the field scale for reduction/immobilization of chrornate contamination. At other sites, the same redox technology is currently being tested for dechlorination of TCE. The reduced zone is created by injected reagents that reduce iron naturally present in the aquifer sediments from Fe(III) to surface-bound and structural Fe(II) species. Standard ground water wells are used, allowing treatment of contaminants too deep below the ground surface for conventional treneh-and-fill technologies.
A proof-of-principle field experiment was conducted in September 1995 at a chromate (hexavalent chromium) contaminated ground water site on the Hartford Site in Washington. The test created a 15 m (˜50 feet) diameter cylindrical treatment zone. The three phases of the test consisted of (1) injection of 77, 000 L (20, 500 gallons) of buffered sodium dithionite solution in 17.1 hours, (2) reaction for 18.5 hours, and (3) withdrawal of 375, 000 L (99, 600 gallons) in 83 hours. The withdrawal phase recovered 87% to 90% of the reaction products. Analysis of post-experimental sediment cores indicated that 60% to 100% of the available reactive iron in the treated zone was reduced. The longevity of the reduced zone is estimated between seven and 12 years based on the post-experiment core samples. Three and half years after the field test, the treatment zone remains anoxic, and hexavalent chromium levels have been reduced from 0.060 mg/L to below detection limits (0.008 mg/L). Additionally, no significant permeability changes have been detected during any phase of the experiment.  相似文献   

11.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

12.
Interceptor trenches are an effective ground water control method at waste management sites. Trenches may be installed without disturbing the wastes, and the withdrawal of ground water recovers contaminants that have left the waste management perimeter. The rapid and steep depression of the piezometric surface on both sides of the trench is positive proof of a barrier to horizontal flow across the trench in the affected permeable units.
Historically, the construction of interceptor trenches has been very difficult. A new and efficient installation method has been developed and successfully utilized for several applications at a petrochemical facility on the Texas coastal plain. Rapid and cost-effective installation is made possible by innovations in sump and trench construction and the tie-in between the two.
The sump is constructed first using standard well construction techniques to drill a 96-inch diameter hole to contain the 42-inch diameter polyethylene pipe sump. A European designed and fabricated trenching machine then excavates the trench, inserts the drainage pipe and backfills with sand and/or gravel in one operation. A specially designed perforated pipe entry door built into the side of the sump barrel provides for efficient and safe connection of the drainage pipe to the specially designed collection sump. The effectiveness of interceptor trenches has been confirmed in full scale applications through the reversal of flow gradients and the prevention of continued horizontal migration of ground water contaminants.  相似文献   

13.
When fugitive methane migrates upward along boreholes of oil and gas wells, it may migrate into shallow ground water or pass through overlying soil to the atmosphere. Prior to this study, there was little information on the fate of fugitive methane that migrates into ground water. In a field study near Lloydminster, Alberta, Canada, we found hydrogeochemical evidence that fugitive methane from an oil well migrated into a shallow aquifer but has been attenuated by dissimilatory bacterial sulfate reduction at low temperature ( approximately 5 degrees C) under anaerobic conditions. Evidence includes spatial and temporal trends in concentrations of methane and sulfate in ground water and associated trends in concentrations of bicarbonate and sulfide. Within 10 m of the oil well, sulfate concentrations were low, and sulfate was enriched in both 34S and 18O. Sulfate concentrations had a strong positive correlation with delta13C values of bicarbonate, and sulfide was depleted in 34S compared to sulfate. These data indicate that bacterial sulfate reduction occurred near the production well. Near the oil well, elevated concentrations of bicarbonate were observed, and the bicarbonate was depleted in 13C. Modeling indicates that the main source of this excess 13C-depleted bicarbonate is oxidized methane. In concert with the sulfate concentration and isotope data, these results support an interpretation that in situ bacterial oxidation of methane has occurred, linked to bacterial sulfate reduction. Bacterial sulfate reduction may play a major role in bioattenuation of fugitive natural gas in ground water in western Canada.  相似文献   

14.
Control of BTEX Migration Using a Biologically Enhanced Permeable Barrier   总被引:2,自引:0,他引:2  
A permeable barrier system. consisting of a line of closely spaced wclls. was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarhon plume. The wells were charged wiih concrete briquets that release oxygen and nitrate at a controlled rate. enhancing aerobic bio-degradation in the downgradient aquifer.
Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygcn over an extended time period. Concretes prepared with urea hydrogen peroxide were unsatisfactory, while concretes prepared with calcium peroxide and a proprietary formalation of magnesium peroxide (ORC®) gradually released oxygen at a steadily declining rate. The 21 percent MgO2 conerete cylinders and briquets released oxygen at measurable rates for up to 300 days, while the 14 percent CaO2 briquets were exhausted by 100 days.
A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation. total BTFX decreased from 17 to 3.4 mg/L. and dissolved oxygen increased from 0.4 to 1.8 mg/L. during transport through the barrier. Over time, BTEX treatment efficiencies declined. indicating the barrier system had becomc less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that ihc aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals. This clogging is believed to result from high pH from the concrete and oxygen released by ihc ORC. Oxygen-releasing permeable barriers and other aerobic bioremediation processes should be used with caution in aquifers with high levels of dissolved iron.  相似文献   

15.
The possible mine will remove a gently, less than 50 feet per mile, westerly dipping Springfield coal from an area covered by glacial till and some channel sands and gravel. The area is flat, with less than 20 feet of relief in a square mile. The channel sands and gravels, the till and the bedrock are capable of yielding ground water at 5 to 75,3 to 10, and 1 to 10 gallons per minute (gpm), respectively. The ground water in the drift and the shallow bedrock is calcium-bicarbonate type, contrasting with the sodium-bicarbonate type in the deep bedrock. The surface mine will feature selective handling of overburden. The probable hydrologic consequences of the mine will be 1) a short-term, areally limited dewatering, 2) an increase in dissolved solids, 3) a change in ground water chemistry in some areas to a calcium-bicarbonate sulfate water, 4) an increase in ground water storage, and 5) a new integrated surface water system. The proposed ground water monitoring system will include seven monitoring wells in the glacial material and one in the bedrock. The primary effort in ground water monitoring to the west of the mine will be to detect changes in the quality of the ground water, whereas to the east, changes in both quality and quantity will need to be monitored intensively.  相似文献   

16.
A rapid-screening technique was developed to identify lithologies that best disperse artificial recharge via surface infiltration and minimize effects on ground water chemistry. The technique prospectively evaluates basin infiltration rates and water chemistry influences by integrating geotechnical, hydraulic, and water quality data with column test data and numerical modeling. The technique was validated using field data collected from surface infiltration basins designed to recharge ground water pumped from the Pipeline pit gold mine in Nevada. Observed recharge rates at these infiltration sites correlated most significantly with depth to groundwater, with basins in coarse-grained lithologies performing better (0.45 to 0.85 m/day) than those with fine-grained layers (< 0.30 m/day). Observed water quality resulting from leaching of the previously unsaturated vadose zone showed a transitory (< six months) increase in solute concentrations followed by a decrease to baseline conditions, a phenomenon also observed in column tests that leached native soils with local ground water. Leaching of fine-grained soils with evaporites resulted in greater solute concentrations (TDS > 2000 mg/L) than coarse-grained soils (< 1200 mg/L). The results of HYDRUS_2D simulations using the accumulated data as input were in agreement with observed ground water chemistry downgradient of the infiltration basins for a variety of lithologies. Sites for infiltration basins can be rapidly screened to include areas with greatest depth to groundwater and in coarsest alluvial sediments, and impact to ground water chemistry can be reliably predicted using computer modeling and column test results.  相似文献   

17.
The union of a piezoresistive pressure transducer and a porous ceramic cup was termed "transiometer." The transiometer was constructed from economical and readily available materials. It could be used to measure soil water potentials in both saturated and unsaturated conditions, and was well suited to continuous monitoring with data acquisition equipment.
Transiometer testing was conducted at two sites, one of moderate permeability and the other of slow permeability. The slowly permeable site was instrumented with four replications of the following: (1) transiometers installed at four depths, (2) a transi-ometerwithout the ceramic cup, (3) apiezometer, and (4) access tubes for monitoring soil moisture with a neutron probe. The moderately permeable site was instrumented with a transiometer, two piezometers, and an access tube for monitoring with a neutron probe.
In saturated conditions the transiometer had a faster response time after installation than the piezometer. Faster response makes the transiometer more desirable for use in slowly permeable soils, especially when monitoring dynamic soil water.
Calculated random error of the transiometer measuring system, including a digital voltmeter and a scanner, was typically 0.09 feet (2.8cm), with a maximum calculated to be 0.38 feet (11.5cm). The two most significant components were imprecision of the scanner card and calibration shift. The transiometer was sensitive to atmospheric pressure fluctuations, with sensitivity to atmospheric pressure change increasing with installation depth.  相似文献   

18.
Because of the ubiquitous nature of anthropogenic nitrate (NO3(-)) in many parts of the world, determining background concentrations of NO3(-) in shallow ground water from natural sources is probably impossible in most environments. Present-day background must now include diffuse sources of NO3(-) such as disruption of soils and oxidation of organic matter, and atmospheric inputs from products of combustion and evaporation of ammonia from fertilizer and livestock waste. Anomalies can be defined as NO3(-) derived from nitrogen (N) inputs to the environment from anthropogenic activities, including synthetic fertilizers, livestock waste, and septic effluent. Cumulative probability graphs were used to identify threshold concentrations separating background and anomalous NO(3)-N concentrations and to assist in the determination of sources of N contamination for 232 spring water samples and 200 well water samples from karst aquifers. Thresholds were 0.4, 2.5, and 6.7 mg/L for spring water samples, and 0.1, 2.1, and 17 mg/L for well water samples. The 0.4 and 0.1 mg/L values are assumed to represent thresholds for present-day precipitation. Thresholds at 2.5 and 2.1 mg/L are interpreted to represent present-day background concentrations of NO(3)-N. The population of spring water samples with concentrations between 2.5 and 6.7 mg/L represents an amalgam of all sources of NO3(-) in the ground water basins that feed each spring; concentrations > 6.7 mg/L were typically samples collected soon after springtime application of synthetic fertilizer. The 17 mg/L threshold (adjusted to 15 mg/L) for well water samples is interpreted as the level above which livestock wastes dominate the N sources.  相似文献   

19.
At a service station closed in 1993, groundwater contained benzene that persisted above the cleanup goal of 1 mg/L in zones depleted of background sulfate. The benzene and other petroleum hydrocarbons (PHCs) were present as much as 36 feet (11 m) below the water table and therefore remediation of a thick saturated zone interval was required. Microcosms using site sediments demonstrated that anaerobic benzene biodegradation occurred only if sulfate was added, suggesting sulfate addition as a remediation approach. Twenty-four boreholes (9.1″ diameter and 56′ deep) were drilled around four monitoring wells, in which benzene concentrations exceeded 1 mg/L. The boreholes were backfilled with a mixture of gravel and 15,000 pounds of gypsum (which releases sulfate as it dissolves) to create “Permeable Filled Borings” (PFBs). Concurrently, nine high pressure injections (HPIs) of gypsum slurry were conducted in other site locations (312 pounds of gypsum total). PFBs were expected to release sulfate for up to 20 years, whereas HPIs were expected to produce a short-lived plume of sulfate. Concentrations of benzene and sulfate in groundwater were monitored over a 3-year period in six monitoring wells. In two wells near PFBs, benzene concentrations dropped below the cleanup goal by two to three orders of magnitude; in one well, sulfate concentrations exceeded 500 mg/L for the most recent 18 months. Benzene concentrations in two other PFB monitoring wells declined by a factor of 2 to 4, but remained above 1 mg/L, presumably due to high-dissolved PHC concentrations and possibly greater residual PHC mass in adjacent sediments, and therefore greater sulfate demand. However, hydrogen and sulfur isotopic enrichment in benzene and sulfate, respectively, confirmed biodegradation of benzene and stimulation of sulfate-reducing conditions. Thus, it is hypothesized that the PHC mass in adjacent sediments will decline over time, as will dissolved PHC concentrations, and eventually benzene concentrations will decrease below the cleanup goal. Benzene in two HPI monitoring wells was below the cleanup goal for all but one sampling event before HPIs were conducted and remained below the cleanup goal after HPIs; there was no stimulation of sulfate-reducing conditions. It is concluded that sulfate released from PFBs contributed to declining benzene concentrations.  相似文献   

20.
A zone of contaminated ground water has been identified in an unconfined sand aquifer adjacent to a pit into which spent pulp liquor was intermittently discharged from 1970 to 1979. A network of multilevel sampling, bundle-type piezometers was installed. Up to seven depthspecific sampling points were incorporated into each piezometer providing a cost-effective means for three-dimensional mapping of hydraulic head and water quality in the unconfined sand aquifer. Ground-water samples retrieved from this network showed an area of contamination 900 m long, 400 m wide, and more than 25 m deep. This plume is dispersed about the ground-water flow lines passing beneath the waste disposal pit, and it terminates at a vigorous ground-water discharge area located 800 m from the pit. The contaminated ground water is characterized by elevated concentrations of sodium (3,000 mg/1), chloride (590 mg/1), alkalinity (2,700 mg/1), total organic carbon (2,000 mg/1), chemical oxygen demand (10,800 mg/1), biological oxygen demand (2,000 mg/1), tannin and lignin (780 mg/1), and lower sulphate (1 mg/1) compared to background ground waters in the area. The apparent rate of sodium migration is more than 50 m/yr and is close to the average linear ground-water velocity. Removal of some organic matter by biological transformation has produced the increased alkalinity in the contaminated ground water and somewhat reduced pH. Tannin and lignin are relatively inert compared to other organic compounds found in the waste liquor. Extremely low sulphate levels occurring in the highly contaminated ground waters indicate the existence of conditions favorable for microbially-mediated sulphate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号