首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the end of the Middle Weichselian (30–25 ka BP) a glacier advance from southern Norway, termed the Kattegat Ice Stream, covered northern Denmark, the Kattegat Sea floor and the Swedish West Coast during onset of the Last Glacial Maximum (LGM) at the southwest margin of the Scandinavian Ice Sheet. The lithostratigraphic unit deposited by the ice stream is the till of the Kattegat Formation (Kattegat till). Because morphological features have been erased by later glacial events, stratigraphic control and timing are decisive. The former ice stream is identified by the dispersal of Oslo indicator erratics from southern Norway and by glaciodynamic structures combined with glaciotectonic deformation of subtill sediments. Ice movement was generally from northerly directions and the flow pattern is fan-shaped in marginal areas. To the east, the Kattegat Ice Stream was flanked by passive glaciers in southern Sweden and its distribution was probably governed by the presence of low permeability and highly deformable marine and lacustrine deposits. When glaciers from southern Norway blocked the Norwegian Channel, former marine basins in the Skagerrak and Kattegat experienced glaciolacustrine conditions around 31–29 ka BP. The Kattegat Ice Stream became active some time between 29 ka BP and 26 ka BP, when glaciers from the Oslo region penetrated deep into the shallow depression occupied by the Kattegat Ice Lake. Deglaciation and an interlude with periglacial and glaciolacustrine sedimentation lasted until c. 24–22 ka BP and were succeeded by the Main Glacier Advance from central Sweden reaching the limit of Late Weichselian glaciations in Denmark around 22–20 ka BP, the peak of the LGM. This was followed by deglaciation and marine inundation in the Kattegat and Skagerrak around 17 ka BP.  相似文献   

2.
Late Weichselian glacier limits for the Forlandsundet area, western Spitsbergen are reconstructed from the stratigraphic distribution of tills and deglacial deposits, variations in the altitude of the marine limit, distribution of pre-Late Weichselian raised beach deposits, and the rare occurrence of moraines and striated bedrock. The Late Weichselian glaciation was primarily a local event with fjord outlet-glaciers expanding no more than 15 km beyond their present position; cirque glaciers were similar to their neoglacial limits. A previously reconstructed ice sheet centered over the Barents Shelf had little direct influence on the glaciation of the Forlandsundet area. Glacier retreat began at or prior to 10.5 ka ago and possibly as early as 13 ka ago with fjords mostly, and perhaps rapidly deglaciated by 10 to 9 ka ago.  相似文献   

3.
The sedimentary record around outer Scorcsby Sund begins with the Scorcsby Sund glaciation (≅ isotope stage 6), but is incomplete. Both at Kap Hope, headward of the fjord mouth, and at Kikiakajik on the outer coast. there are shallow marine sediments, correlated with the Langelandselv interglaciation (≅ isotope substagc 5e) on the basis of molluse assemblages and luminescence dates. Abundant Balanus crenatus , and several bivalves. show that thc adveetion of warm Atlantic water to the East Greenland coast was higher during that interglacial than during the Holocenc. Glacial striae at Kap Brewster (facing the open ocean) and till on top of the interglacial beds at Kikiakajik show that both an outlet from the Greenland Iee Sheet, and more local glaciers reached the continental shelf during the Weichselian. This glacial event is poorly dated. but tentatively correlated with the Flakkerhuk stade (≅ 19 15 ka BP) when, from marine geological data, it is suggested that thc Scoresby Sund glacier terminated c . 30 km east of Kap Brewster. During the Milne Land stade ( c . 10 ka BP) there was a resurgence of local ice caps in the mountains both north and south of the fjord mouth, but Scoresby Sund and Hall Bredning probably remained free of glaciers. Dating of these events was achieved through Iuminescence- (TL and OSL) and the 14C-method. and biostratigraphical and amino acid correliition Interglacial shells on thc outer coast show much lower amino acid D/L ratios than shells of the same age within the Scoresby Sund area. This may indicate that the outer coast remained free of ice cover and marine inundation much longer, arid suffered colder temperatures than areas along the fjord.  相似文献   

4.
Marine, fluvial and glacigene sediments exposed in coastal cliffs and stream-cut sections in East Greenland between latitudes 69° and 78° N display a record of Quaternary climatic and environmental change going back to pre-Saalian times (> 240 ka), but with main emphasis on the last interglacial/glacial cycle. The stratigraphical scheme is based on studies on the Jameson Land peninsula, and contains five glacial stages and stades with the Greenland ice sheet or its outlets reaching the outer coasts. Individual sites are correlated and dated by a combination of biostratigraphy, luminescence dating, amino acid analyses, as well as 14C- and uranium series dating. The pre-Weichselian Lollandselv and Scoresby Sund glaciations were the most extensive. During the Weichselian the Inland Ice margin in this part of East Greenland was apparently very stable. The Aucellaelv, Jyllandselv and Flakkerhuk stades mark the advance and subsequent retreat of outlet glaciers from the Inland Ice which advanced through the wide Scoresby Sund basin and reached the inner shelf. In-between the glacier advances, three interglacial or interstadial periods have been recognized. During the Langelandselv interglacia-tion (≅ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faunas show that summer temperatures were 3–4°C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sø interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2° -3° lower than the present. The marine and fluvial sediments from the second ice-free period, the Mønselv interstade, are devoid of organic remains.  相似文献   

5.
Sejrup, Hans Petter 1987 03 01: Molluscan and foraminiferal biostratigraphy of an Eemian-Early Weichselian section on Karmøy, southwestern Norway. Boreas , Vol. 16, pp. 27–42. Oslo. ISSN 0300–9483.
At Karmøy, southwestern Norway, a section with marine sediments from the last interglacial (the Avaldsnes Interglacial) and from two ice-free periods (the Torvastad and Bø Interstadial) in the Weichselian have been examined for molluscs and foraminifera. The following conclusions concerning the depositional environments of these sediments can be drawn: (1) The Avaldsnes Interglacial was a high-energy environment with a sea level 20 to 50 m higher than at present, regressing towards the end of the interglacial. Sea temperatures were as in the area today or slightly warmer. (2) During the Torvastad Interstadial (71–85 ka) the sea level was between 0 and c . 20 m higher than at present, and sea temperatures were as between Svalbard and northern Norway today. (3) The Bø Interstadial (40–64 ka) shows a complete interstadial cycle, with changing sea level and temperatures. Its optimum was close to the conditions prevailing in North Norway today or slightly colder. By comparison with other sites, a total of at least four interstadial episodes through the Weichselian in southwestern Norway is proposed. These date to c . 30 ka, 40–64 ka, 71–85 ka and 87–101 ka. The episodes and the glacial advances between them do not directly correlate with published interpretations of changes in surface circulation in the Norwegian Sea through the Weichselian. It is suggested that the nourishment of the southern part of the Scandinavian ice sheet might be more related to sea surface conditions in the North Atlantic than to those of the Norwegian Sea.  相似文献   

6.
Three localities with marginal moraines deposited by former cirque glaciers are investigated in east-central southern Norway. The wet-based (erosive) cirque glaciers with aspects towards S-SW and N-NE are mapped at altitudes above 1100 m, and have a mean equilibrium-line altitude of 1275 m. With a suggested mean annual winter precipitation close to the average for the modern accumulation season (1 October-30 April) when the cirque glaciers existed, the mean air-temperature depression during the ablation season (1 May-30 September) is calculated to be 6–7°C lower than at present. The high-altitude cirques of central Rondane were still covered by ice when the low-altitude cirque glaciers developed in distal position for this massif in eastern Rondane and on isolated mountains. Hence, the cirque glaciers are suggested to have existed during the deglaciation after the Late Weichselian maximum, and most likely during the Younger Dryas (11000–10000 BP). The cirque glaciers indicate a downwasting ice-sheet surface well below an altitude of 1100 m prior to the Younger Dryas, and this supports a limited (small) vertical extent for the Late Weichselian ice sheet in this region. With the contemporaneous level for instantaneous glacierization (glaciation threshold) just below the highest elevated peaks in east-central southern Norway, this fits with the idea of a continuous downwasting of the Late Weichselian ice sheet since the 'first' nunataks appeared. The occurrence of the cirque glaciers indicates a multidomed Scandinavian ice-sheet geometry during the Late Weichselian.  相似文献   

7.
This paper presents the results from stratigraphic and geomorphologic investigations in the Poolepynten area, Prins Karls Forland, western Svalbard. Field mapping, soil profile development and 14C dating reveal the existence of at least two generations of raised beach deposits. Well-developed raised beaches rise to the Late Weichselian marine limit at 36 m a.s.l. Discontinuous pre-Late Weichselian beach deposits rise from the Late Weichselian marine limit to approximately 65 m a.s.l. Expansion of local glaciers in the area during the Late Weichselian is indicated by a till that locally overlies pre-Late Weichselian raised beach deposits. Stratigraphic data from coastal sections reveal two shallow marine units deposited during part of oxygen isotope stage 5. The two shallow marine units are separated by a subglacially deposited till that indicates an ice advance from Prins Karls Forland into the Forlandsundet basin some time during the latter part of stage 5. Discontinuous glaciofluvial deposits and a cobble-boulder lag could relate to a Late Weichselian local glacial advance across the coastal site. Late Weichselian/early Holocene beach deposits cap the sedimentary succession. Palaeotemperature estimates derived from amino acid ratios in subfossil marine molluscs indicate that the area has not been submerged or covered by warm based glacier ice for significant periods of time during the time interval ca. 70 ka to 10 ka.  相似文献   

8.
Thermoluminescence dating has been carried out on feldspar sand grains from the distal sandur of the Godøya Formation and correlated sediments at Sunnmøre, western Norway. The accumulated dose was determined by the regeneration method. The Godøya Formation, which was earlier assumed to be of Middle Weichselian age, was dated to 105–130 ka and is now assumed to postdate immediately the Eemian interglacial. Dates of sediments previously correlated to the Godøya Formation yielded ages in the ranges of 70–90 and 40–50 ka, thus indicating at least three Weichselian ice-free periods predating the Ålesund interstadial in the area.  相似文献   

9.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

10.
The occurrence of till beds alternating with glaciomarine sediment spanning oxygen isotope stages 6 to 2, combined with morphological evidence, shows that the southwestern fringe of Norway was inundated by an ice stream flowing through the Norwegian Channel on at least four occasions, the last time being during the Late Weichselian maximum. All marine units are deglacial successions composed of muds with dropstones and diamictic intrabeds and a foraminiferal fauna characteristic of extreme glaciomarine environments. Land‐based ice, flowing at right angles to the flow direction of the ice stream, fed into the ice stream along an escarpment formed by erosion of the ice stream. Each time the ice stream wasted back, land‐based ice advanced into the area formerly occupied by the ice stream. During the last deglaciation of the ice stream (c. 15 ka BP), the advance of the land‐based ice occurred immediately upon ice stream retreat. As a result, the sea was prevented from inundating the upland areas, allowing most of the glacioisostatic readjustment to occur before the land‐based ice melted back at about 13 ka BP. This explains the low Late Weichselian sea levels in the area (10–20 m) compared with those of the Middle Weichselian and older sea‐level high stands (~200 m). Regional tectonic movements cannot explain the location of the observed marine successions. The highest sea level recorded (>200 m) is represented by glaciomarine sediments from the Sandnes interstadial (30–34 ka BP). Older interstadial marine sediments are found at somewhat lower levels, possibly as a result of subsequent glacial erosion in these deposits. Ice streams developed in the Norwegian Channel during three Weichselian time intervals. This seems to correspond to glacial episodes both to the south in Denmark and to the north on the coast of Norway, although correlations are somewhat hampered by insufficient dating control.  相似文献   

11.
Sediment successions in coastal cliffs around Mezen Bay, southeastern White Sea, record an unusually detailed history of former glaciations, interstadial marine and fluvial events from the Weichselian. A regional glaciation model for the Weichselian is based on new data from the Mezen Bay area and previously published data from adjacent areas. Following the Mikulinian (Eemian) interglacial a shelf‐centred glaciation in the Kara Sea is reflected in proglacial conditions at 100–90 ka. A local ice‐cap over the Timan ridge existed between 75 and 65 ka. Renewed glaciation in the Kara Sea spread southwestwards around 60 ka only, interrupted by a marine inundation, before it advanced to its maximum position at about 55–50 ka. After a prolonged ice‐free period, the Scandinavian ice‐sheet invaded the area from the west and terminated east of Mezen Bay about 17 ka. The previously published evidence of a large ice‐dammed lake in the central Arkhangelsk region, Lake Komi, finds no support in this study. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Alexanderson, H., Landvik, J. Y. & Ryen, H. T. 2010: Chronology and styles of glaciation in an inter‐fjord setting, northwestern Svalbard. Boreas, 10.1111/j.1502‐3885.2010.00175.x. ISSN 0300‐9483. A 30‐m‐thick sedimentary succession at Leinstranda on the southwestern coast of Brøggerhalvøya, northwestern Svalbard, spans the two last glacial–interglacial cycles and reveals information on glacial dynamics, sea‐level changes and the timing of these events. We investigated the deposits using standard stratigraphical and sedimentological techniques, together with ground‐penetrating radar, and established an absolute chronology based mainly on optically stimulated luminescence dating. We identified facies associations that represent depositional settings related to advancing, overriding and retreating glaciers, marine and littoral conditions and periglacial surfaces. The environmental changes show an approximate cyclicity and reflect glaciations followed by high sea levels and later regression. The luminescence chronology places sea‐level highstands at 185 ± 8 ka, 129 ± 10 ka, 99 ± 8 ka and 36 ± 3 ka. These ages constrain the timing of recorded glaciations at Leinstranda to prior to c. 190 ka, between c. 170 and c. 140 ka (Late Saalian) and between c. 120 ka and c. 110 ka (Early Weichselian). The glaciations include phases with glaciers from three different source areas. There is no positive evidence for either Middle or Late Weichselian glaciations covering the site, but there are hiatuses at those stratigraphic levels. A high bedrock ridge separates Leinstranda from the palaeo‐ice stream in Kongsfjorden, and the deposits at Leinstranda reflect ice‐dynamic conditions related to ice‐sheet evolution in an inter‐fjord area. The environmental information and the absolute chronology derived from our data allow for an improved correlation with the marine record, and for inferences to be made about the interaction between land, ocean and ice during the last glacial–interglacial cycles.  相似文献   

13.
The coast-parallel Flakkerhuk ridge on southern Jameson Land revealed a succession of four marine formations separated by tills and glaciotectonic deformation zones representing glacier advances. Paleontological evidence. supported by 32 luminescence datings, indicates that deposition took place during the Eemian and Early Weichselian. A pronounced rise in sea-level due to glacio-isostatic depression is evidenced within the Late Eemian part of the sequence, indicating buildup of ice commencing while interglacial conditions still prevailed. A diamicton interpreted as a till deposited by a glacier moving from the interior of Jameson Land and overlying the interglacial deposits would seem to suggest the presence of a local ice cap on Jameson Land at the last interglacial/glacial transition. Three ice advances from the fjord onto the coast were identified following the last interglacial. The glaciers at no time advanced beyond 2–3 km inland from the coast in the investigated area. This demonstrates that the glaciers advancing through the Scoresby Sund fjord during the Weichselian were relatively thin, with a low longitudinal gradient. Glacier advances onto the coast were apparently strongly influenced by local topography and relative sea-level. The Flakkerhuk ridge is mainly an erosional landform originating from continued fluvial downcutting of former drainage channels from along the Early Weichselian ice margin. Only the very top of the ridge is considered to he a constructional ice marginal ridge, related to the Flakkerhuk glaciation.  相似文献   

14.
Detailed investigations of sediments exposed along river sections in the coastal part of Jameson Land have revealed a Saalian to Holocene glacial history. Eleven sedimentary units have been distinguished. most of which are found in superposition at one single large section. Four subglacially formed till beds are recognized; three of which are of Weichselian age. All the tills are considered to have been deposited at the base of fjord glaciers restricted to the Scoresby Sund basin. The tills are separated by marine, fluvial or deltaic sediments, and demonstrate changes in the depositional environnient considered to represent changes in relative sea level during the ice-free periods. The fossil content. supported by a series of luminescence dates, suggest that most of the succession is of Eemian and Early Weichselian age. From the luminescence dates, a short duration of <10ka is suggested for the Early Weichselian glacial stades. Sedimentation during this period was partly controlled by glacio-isostatic subsidence caused by net growth of the Greenland Ice Sheet. The Middle Weichselian is represented by a large hiatus. whereas the Late Weichselian is represented by a subglacial till.  相似文献   

15.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

16.
Three sites with alleged relict rock glaciers are described from southern Faeroe Islands, in the North Atlantic Ocean. The rock glaciers represent both talus-derived and glacier-derived types and were most likely initiated during the late Weichselian. One of the rock glaciers apparently became unstable at some point during degradation of permafrost and was subsequently transformed by a landslide. The age of the rock glaciers are not known precisely, but a Younger Dryas age is suggested, partly by considering contemporary local equilibrium line altitudes. The climatic background for rock glacier initiation on the Faeroe Islands during the Younger Dryas is investigated, using various types of palaeoclimatic information. The potential of using relict rock glaciers in palaeoclimatic reconstructions is discussed, and their implications for estimates on air temperature, precipitation, permafrost, rock weathering and the contemporary extent of the Weichselian Faeroe Ice Cap is outlined. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Superimposed glacial and marine sediment exposed in coastal cliffs on Brøggerhalvøya, west Spitsbergen, contain four emergence cycles (episodes D, C, B, and A) that are related to glacial-isostatic depression and subsequent recovery of the crust. Tills are found in episodes C and B; in each case glaciation began with an advance of local glaciers, followed by regional glaciation. The marine transgression following episode C deglaciation reached 70 to 80 m above sea level. Glacial-marine and sublittoral sands within episode C contain a diverse and abundant microfauna requiring marine conditions more favorable than during the Holocene. We define this interval as the Leinstranda Interglacial. Based on the fauna, sedimentology and geochronology (radiocarbon, amino acid racemization, and uranium-series disequilibrium) we conclude that the Leinstranda Interglacial occurred during isotope substage 5e. Episode B deglaciation occurred late in isotope stage 5 (c. 70 ± 10 ka ago), and was followed by a marine transgression to about 50 m above sea level. The associated foraminifera, mollusca, and vertebrate fauna require seasonally ice-free conditions similar to those of the Holocene, but less ameliorated than during the Leinstranda Interglacial. A significant influx of Atlantic water into the Norwegian Sea, augmented by a local insolation maximum late in isotope stage 5, are required to produce shallow-water conditions similar to those of the Holocene. There is no evidence for major glacial activity during the Middle Weichselian (isotope stages 4 and 3), and we conclude that ice margins were not significantly different from those of the late Weichselian, but the record for this interval is scant. The extent of ice at the Late Weichselian maximum was less than during either of the two preceding episodes (B or C). Late Weichselian deglaciation (episode A) began prior to 13 ka B.P. Oceanic and atmospheric circulation patterns conducive to large-scale glaciation of western Spitsbergen are not well understood, but those patterns that prevailed during isotope stages 4,3, 2, and 1 did not produce a major glacial advance along this coast.  相似文献   

18.
Moraines along the southwestern slopes of the Qilian Shan were dated using cosmogenic radionuclide (CRN) surface exposure techniques to help define the timing of glaciation in northernmost Tibet. The CRN data show glaciers extending 5–10 km beyond their present positions during the global Last Glacial Maximum (LGM) and probably maintained at their maximum extent until the Lateglacial. These data help support the view that glaciers throughout Tibet and the Himalaya were maintained at or near their maximum LGM extent until the Lateglacial. An optically stimulated luminescence date of 11.8 ± 1.0 ka on silt that caps a latero-frontal moraine shows that glaciers had retreated significantly by the end of the Pleistocene and that loess was beginning to form in this region in response to the changing climate during and after the Younger Dryas Stade.  相似文献   

19.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   

20.
Isoleucine epimerization (alle/Ue) ratios in the pelecypod Mya truncata and benthic foraminifer Cibicides lobalulus from emerged marine units in western Norway allow construction of a regional relative chronostratigraphy for the Ecmian and Weichselian. Two in situ interglacial sections are considered correlative by the similar biostratigraphy and alle/Ile ratios in C. lobalulus. Overlying sediments at the two sites are of both marine and glacial origin. Neither site contains a complete Weichselian record, but allelic ratios, lithostratigraphy and fauna! changes suggest at least four stadial and three interstadial events occurred along the western Norwegian coast during Early and Middle Weichselian time. Kinetic data defining the relationship between the isoleucine epimerization rate constant and temperature for the species studied allow the estimation of paleotemperatures for samples of known age. Accepting published age estimates for the Eemian interglacial beds, the average Weichselian temperature in western Norway is calculated to have been ca. 4°C below the average Holocene temperature, whereas the last interglacial was 1 to 2°C warmer that the Holocene. The limited temperature depression over this region during the Weichselian implies that coastal western Norway was ice-covered only about 30% of this period, and that Atlantic water, although not necessarily in a warm surface current as today, entered the Norwegian Sea during much of marine isotope stage 5 and intermittently during stage 3. Interpolated amino acid ages date interstadial events at ca. 94 ka, 78 ka and 52 ka, B.P., whereas glacial events are dated ca. 103 ka and bracketed by limiting dates between 78 and 89 ka, between 52 and 63 ka and less than 36 ka B.P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号