首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative solar spectroscopy must be based on calibrated instrumentation. The basic requirement of a calibration, i.e., a comparison between the instrument under test and a primary laboratory standard through appropriate procedures, will be briefly reviewed, and the application to modern space instruments will be illustrated. Quantitative measurements of spectral radiances with high spectral and spatial resolutions as well as spectral irradiances yield detailed information on temperatures, electron densities, bulk and turbulent motions, element abundances of plasma structures in various regions of the solar atmosphere – from the photosphere to the outer corona and the solar wind. The particular requirements for helioseismology and magnetic‐field observations will not be covered in any depth in this review. Calibration by a laboratory standard is necessary, but not sufficient, because an adequate radiometric stability can only be achieved together with a stringent cleanliness concept that rules out a contamination of the optical system and the detectors as much as possible. In addition, there is a need for calibration monitoring through inter‐calibration and other means (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Upcoming large solar telescopes will offer the possibility of unprecedented high resolution observations. However, during periods of non‐ideal seeing such measurements are impossible and alternative programs should be considered to best use the available observing time. We present a synoptic program, currently carried out at the Istituto Ricerche Solari Locarno (IRSOL), to monitor turbulent magnetic fields employing the differential Hanle effect in atomic and molecular lines. This program can be easily adapted for the use at large telescopes exploring new science goals, nowadays impossible to achieve with smaller telescopes. The current, interesting scientific results prove that such programs are worthwhile to be continued and expanded in the future. We calculate the approximately achievable spatial resolution at a large telescope like ATST for polarimetric measurements with a noise level below 5 × 10‐5 and a temporal resolution which is sufficient to explore variations on the granular scale. We show that it would be important to optimize the system for maximal photon throughput and to install a high‐speed camera system to be able to study turbulent magnetic fields with unprecedented accuracy (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The high central stellar densities in globular clusters provide a unique environment to study the fundamental dynamical process of two‐body relaxation. This process is the main driver of the dynamical evolution in the center of a globular cluster and has a profound effect on the structure of the cluster and on its stellar environment. We have obtained stellar absorption line spectra with STIS to measure the radial velocities of individual stars in the crowded center of the globular cluster M15. These data increase the number of stars with known radial velocities within the central arcsec by a factor of about three and significantly improve the constraints on the mass distribution in M15. The data provide the most detailed look of the central structure of any globular cluster and show that there is a compact dark central mass component. Similar studies using ground based facilities can be efficiently performed by employing Integral Field Units. We have started a project to better constrain the central mass density in the globular cluster M3 using the GMOS‐IFU on Gemini North. The data will also allow us to better understand the central rotation which is neither explained nor predicted by any globular cluster model. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In preparation for future, large‐scale, multi‐object, high‐resolution spectroscopic surveys of the Galaxy, we present a series of tests of the precision in radial velocity and chemical abundances that any such project can achieve at a 4 m class telescope. We briefly discuss a number of science cases that aim at studying the chemo‐dynamical history of the major Galactic components (bulge, thin and thick disks, and halo) – either as a follow‐up to the Gaia mission or on their own merits. Based on a large grid of synthetic spectra that cover the full range in stellar parameters of typical survey targets, we devise an optimal wavelength range and argue for a moderately high‐resolution spectrograph. As a result, the kinematic precision is not limited by any of these factors, but will practically only suffer from systematic effects, easily reaching uncertainties <1km s–1. Under realistic survey conditions (namely, considering stars brighter than r = 16 mag with reasonable exposure times) we prefer an ideal resolving power of R ∼20 000 on average, for an overall wavelength range (with a common two‐arm spectrograph design) of [395;456.5] nm and [587;673] nm. We show for the first time on a general basis that it is possible to measure chemical abundance ratios to better than 0.1 dex for many species (Fe, Mg, Si, Ca, Ti, Na, Al, V, Cr, Mn, Co, Ni, Y, Ba, Nd, Eu) and to an accuracy of about 0.2 dex for other species such as Zr, La, and Sr. While our feasibility study was explicitly carried out for the 4MOST facility, the results can be readily applied to and used for any other conceptual design study for high‐resolution spectrographs. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Observation data from radio telescopes is typically stored in three (or higher) dimensional data cubes, the resolution, coverage and size of which continues to grow as ever larger radio telescopes come online. The Square Kilometre Array, tabled to be the largest radio telescope in the world, will generate multi-terabyte data cubes – several orders of magnitude larger than the current norm. Despite this imminent data deluge, scalable approaches to file access in Astronomical visualisation software are rare: most current software packages cannot read astronomical data cubes that do not fit into computer system memory, or else provide access only at a serious performance cost. In addition, there is little support for interactive exploration of 3D data.We describe a scalable, hierarchical approach to 3D visualisation of very large spectral data cubes to enable rapid visualisation of large data files on standard desktop hardware. Our hierarchical approach, embodied in the AstroVis prototype, aims to provide a means of viewing large datasets that do not fit into system memory. The focus is on rapid initial response: our system initially rapidly presents a reduced, coarse-grained 3D view of the data cube selected, which is gradually refined. The user may select sub-regions of the cube to be explored in more detail, or extracted for use in applications that do not support large files. We thus shift the focus from data analysis informed by narrow slices of detailed information, to analysis informed by overview information, with details on demand. Our hierarchical solution to the rendering of large data cubes reduces the overall time to complete file reading, provides user feedback during file processing and is memory efficient. This solution does not require high performance computing hardware and can be implemented on any platform supporting the OpenGL rendering library.  相似文献   

6.
In this article we describe a case study of how NOAO is considering improving its management of Target‐of‐Opportunity (ToO) observations by integrating VOEvent into the flow of activities. We believe that using VOEvent to help document and track the use of ToO time will improve the user experience of ToOs at NOAO. It will also greatly aid in the management of the process and of the resulting data, allowing us to better track the ownership and provenance of the data and any resulting data products. Finally, it will provide an important method of archival access to the data and data “collections,” which might include not only processed data from a single VOEvent triggered observation but could also include multiple observations traceable to a single (or set of related) VOEvents. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Temporal sampling does more than add another axis to the vector of observables. Instead, under the recognition that how objects change (and move) in time speaks directly to the physics underlying astronomical phenomena, next‐generation wide‐field synoptic surveys are poised to revolutionize our understanding of just about anything that goes bump in the night (which is just about everything at some level). Still, even the most ambitious surveys will require targeted spectroscopic follow‐up to fill in the physical details of newly discovered transients. We are now building a new system intended to ingest and classify transient phenomena in near real‐time from high‐throughput imaging data streams. Described herein, the Transient Classification Project at Berkeley will be making use of classification techniques operating on “features” extracted from time series and contextual (static) information. We also highlight the need for a community adoption of a standard representation of astronomical time series data (ie. “VOTimeseries”). (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The scientific need for a standard protocol permitting the exchange of generic observing services is rapidly escalating as more observatories adopt service observing as a standard operating mode and as more remote or robotic telescopes are brought on‐line. To respond to this need, we present the results of the first interoperability workshop for Heterogeneous Telescope Networks (HTN) held in Exeter. We present a draft protocol, designed to be independent of the specific instrumentation and software that controls the remote and/or robotic telescopes, allowing these telescopes to appear to the user with a unified interface despite any underlying architectural differences. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
The historical development of ground based astronomical telescopes leads us to expect that space‐based astronomical telescopes will need tobe operational for many decades. The exchange of scientific instruments in space will be a prerequisite for the long lasting scientific success of such missions. Operationally, the possibility to repair or replace key spacecraft components in space will be mandatory. We argue that these requirements can be fulfilled with robotic missions and see the development of the required engineering as the main challenge. Ground based operations, scientifically and technically, will require a low operational budget of the running costs. These can be achieved through enhanced autonomy of the spacecraft and mission independent concepts for the support of the software. This concept can be applied to areas where the mirror capabilities do not constrain the lifetime of the mission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The asteroseismic observations provided by current and future missions like CoRoT or Kepler will have a quality closer to those obtained for the Sun. In this context, tools and methods developed for helioseismology can be applied to other stars. In this paper, we focus on solar‐like oscillations of stars with an unknown rotation axis inclination and study, by means of maximum‐likelihood estimation, the errors on the determination of l = 1 p‐mode parameters. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
I review the current architecture of the HTN and make three suggestions for the future. (i) We should retain the expertise split between agents which deal with the science programmes and those which deal with telescope constraints. This makes it easy to add new programmes or new telescopes. (ii) We should develop “look ahead” schedulers which attempt to schedule a whole night at once. This will give reliable calculations for the chance an observation will be carried out, and give a better chance that high priority time critical observations are successfully scheduled. (iii)We should strive to attract more science programmes to the HTN, in particular time critical observations spread over many nights, and non‐time critical work which can benefit from access to databases and the literature. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Charge exchange (CX), both onto ions in the solar wind and potentially in other astrophysical contexts, can create X‐ray emission lines largely indistinguishable from those created in collisional or photoionized plasmas. The prime distinguishing characteristic is in the distinctly different line ratios generated by the CX process. A complete astrophysical model of the process would require a vast number of atomic calculations; we describe here an approximate approach that will allow astronomers to evaluate the likely contribution of CX to an observed spectrum. The method relies upon an approximate calculation of the CX cross section paired with detailed atomic structure calculations used to determine the emission lines. Simulated spectra based on observed solar wind CX data are shown for both current (Suzaku) and near‐term (Astro‐H) missions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The technique of gravitational microlensing is currently unique in its ability to provide a sample of terrestrial exoplanets around both Galactic disk and bulge stars, allowing to measure their abundance and determine their distribution with respect to mass and orbital separation. Thus, valuable information for testing models of planet formation and orbital migration is gathered, constituting an important piece in the puzzle for the existence of life forms throughout the Universe. In order to achieve these goals in reasonable time, a well‐coordinated effort involving a network of either 2m or 4×1m telescopes at each site is required. It could lead to the first detection of an Earth‐mass planet outside the Solar system, and even planets less massive than Earth could be discovered. From April 2008, ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) is planned to provide a platform for a three‐step strategy of survey, follow‐up, and anomaly monitoring. As an expert system embedded in eSTAR (e‐Science Telescopes for Astronomical Research), ARTEMiS will give advice for follow‐up based on a priority algorithm that selects targets to be observed in order to maximize the expected number of planet detections, and will also alert on deviations from ordinary microlensing light curves by means of the SIGNALMEN anomaly detector. While the use of the VOEvent (Virtual Observatory Event) protocol allows a direct interaction with the telescopes that are part of the HTN (Heterogeneous Telescope Networks) consortium, additional interfaces provide means of communication with all existing microlensing campaigns that rely on human observers. The success of discovering a planet by microlensing critically depends on the availability of a telescope in a suitable location at the right time, which can mean within 10 min. To encourage follow‐up observations, microlensing campaigns are therefore releasing photometric data in real time. On ongoing planetary anomalies, world‐wide efforts are being undertaken to make sure that sufficient data are obtained, since there is no second chance. Real‐time modelling offers the opportunity of live discovery of extra‐solar planets, thereby providing “Science live to your home”. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Abstract— This paper describes the development of a new, effective, and non‐destructive method of SiC isolation from meteorites by freeze‐thaw disaggregation, size, and density separation. This new method is important because there is evidence that current methods, which use strong acids and chemical treatments to dissolve silicates and separate out the interstellar grains, may alter the surfaces of the grains chemically and isotopically. Furthermore, any non‐refractory coating present on the grains would be destroyed. Using our new separation method, SiC grains were enriched from ?6 ppm abundance in Murchison whole rock to 0.67% abundance in the 0.4‐1.4 μm size range and 0.27% abundance in the 1.4–17 μm size range. Individual SiC grains were easily identified using electron probe microanalysis (EPMA) mapping of grains distributed thinly on gold foil; a small aliquot from these fractions has so far yielded >150 SiC grains for isotopic analysis. The method separates out SiC grains efficiently, is applicable to very small or rare samples, and avoids the harsh acid treatments that may alter possible amorphous or non‐refractory coats on the grains. The procedure also preserves the remainder of the original sample and it is hoped that it may be extended to other micron‐sized presolar grains found in meteorites such as corundum, graphite, and silicon nitride.  相似文献   

16.
Over the last decade spectro‐polarimetry evolved to ever higher sensitivity levels. New techniques and instruments allow us to address weak polarization signals, which are caused by scattering in the solar atmosphere. In this paper a review on the development of spectro‐polarimetric investigations of scattering physics and its coupling to the solar magnetic field will be given. Starting from a technical point of view it will be demonstrated how our understanding of scattering phenomena and their role in solar physics in general has reached its current state. An outlook on future spectro‐polarimetry with new large solar telescopes concludes this review.  相似文献   

17.
The eSTAR Project uses intelligent agent technologies to carry out resource discovery, submit observation requests and analyze the reduced data returned from a meta‐network of robotic telescopes. Linking ground based telescopes with astronomical satellites, and using the emerging field of intelligent agent architectures to provide crucial autonomous decision making in software, the project has succeeded in combining data archives and research class telescopes, along with distributed computing nodes, to build an ad‐hoc peer‐to‐peer heterogeneous network of resources. We present the current operations paradigm of the eSTAR network and describe the direction in which the project intends to develop over the next few years. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper, we estimate the global stability properties of single‐planet systems by using a catalogue of stability maps. The data of the catalogue were used to generate probability values on the mass parameter–eccentricity plane for the occurrence of stable orbits. We showed that the probability data can be well approximated by a second order surface. Using the resulted formula the likelihood of finding Earth‐like planets in single‐planet systems can be easily estimated. As an example, we derived estimations for four known exoplanetary systems. Our formula can be useful in selecting target stars for future space missions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
We present the current status of the WASP project, a pair of wide angle photometric telescopes, individually called Super‐WASP. SuperWASP‐I is located in La Palma, and SuperWASP‐II at Sutherland in South Africa. SW‐I began operations in April 2004. SW‐II is expected to be operational in early 2006. Each SuperWASP instrument consists of up to 8 individual cameras using ultra‐wide field lenses backed by high‐quality passively cooled CCDs. Each camera covers 7.8 × 7.8 sq degrees of sky, for nearly 500 sq degrees of total sky coverage. One of the current aims of the WASP project is the search for extra‐solar planet transits with a focus on brighter stars in the magnitude range ∼8 to 13. Additionally, WASP will search for optical transients, track Near‐Earth Objects, and study many types of variable stars and extragalactic objects. The collaboration has developed a custom‐built reduction pipeline that achieves better than 1 percent photometric precision. We discuss future goals, which include: nightly on‐mountain reductions that could be used to automatically drive alerts via a small robotic telescope network, and possible roles of the WASP telescopes as providers in such a network. Additional technical details of the telescopes, data reduction, and consortium members and institutions can be found on the web site at: http://www.superwasp.org/. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号