首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We investigate the relationship between the present-day optical luminosity function of galaxies and the X-ray luminosity function of Seyfert 1s to determine the fraction of galaxies that host Seyfert 1 nuclei and their Eddington ratios. The local type 1 active galactic nuclei (AGN) X-ray luminosity function is well reproduced if ∼1 per cent of all galaxies are type 1 Seyferts which have Eddington ratios of ∼10−3. However, in such a model the X-ray luminosity function is completely dominated by AGN in E and S0 galaxies, contrary to the observed mix of Seyfert host galaxies. To obtain a plausible mix of AGN host galaxy morphologies requires that the most massive black holes in E and S0 galaxies accrete with lower Eddington ratios, or have a lower incidence of Seyfert activity, than the central black holes of later-type galaxies.  相似文献   

2.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

3.
We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space–time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.  相似文献   

4.
The X‐ray spectra of luminous Seyfert 1 galaxies often appear to be reflection dominated. In a number of Narrow Line Seyfert 1 (NLS1) galaxies and galactic black holes in the very high state, the variability of the continuum and of the iron line are decoupled, the reflected component being often much less variable than the continuum. These properties have been interpreted as effects of gravitational light bending. In this framework, we present detailed Monte‐Carlo simulations of the reflection continuum in the Kerr metric. These calculations confirm that the spectra and variability behaviour of these sources can be reproduced by the light bending model. As an alternative to the light bending model, we show that similar observational properties are expected from radiation pressure dominated discs subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two‐phase structure. In this model, most of the observed spectral and variability features originate from the complex geometrical structure of the inner regions of near‐Eddington accretion flows and are therefore a signature of accretion physics rather than general relativity. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A brief overview of the ESAC/XMM‐Newton Science Operations Centre Workshop on “Variable and Broad Iron Lines around Black Holes” is presented. Following the relativistic disk‐line theory of accreting black holes, ASCA discovered such broad iron lines from several AGN. XMM‐Newton and Chandra confirmed the ASCA results, but also found more complexities. It was pointed out that poor modelling of the continuum may mimic broad iron line, if ionized absorbers are present. This degeneracy between the broad line and the continuum shape was shown to be resolved by separately determining the continuum and the reflection component with use of an accurate hard X‐ray spectrum obtained with Suzaku. As a result, the relativistic broad iron lines are now robust. Time variations of the primary continuum and the reflection component are often decoupled, the latter varying little. This is explained by the light bending model that applies in the region near to an extreme Kerr hole. The red‐ and/or blueshifted transient iron line features were found with XMM‐Newton, some of which revealed a possible quasi‐periodicity. Such transient features are important dynamical probes of the black hole vicinity. The remaining issues are briefly mentioned. Finally, there is no doubt that the broad line physics continues to be extremely important. Prospects for the future development are discussed, which justify large next‐generation missions. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper, we address the question of whether existing X-ray observations of Seyfert galaxies are sufficiently sensitive to detect quasi-periodic oscillations (QPOs) similar to those observed in the X-ray variations of Galactic black holes (GBHs). We use data from XMM–Newton and simulated data based on the best Rossi X-ray Timing Explorer ( RXTE ) long-term monitoring light curves to show that if X-ray QPOs are present in Seyfert X-ray light curves – with similar shapes and strengths to those observed in GBHs, but at lower frequencies commensurate with their larger black hole masses – they would be exceedingly difficult to detect. Our results offer a simple explanation for the present lack of QPO detections in Seyferts. We discuss the improvements in telescope size and monitoring patterns needed to make QPO detections feasible. The most efficient type of future observatory for searching for X-ray QPOs in active Galactic nuclei (AGN) is an X-ray All-Sky Monitor (ASM). A sufficiently sensitive ASM would be ideally suited to detect low-frequency QPOs in nearby AGN. The detection of AGN QPOs would strengthen the AGN–GBH connection, and could serve as powerful diagnostics of the black hole mass and the structure of the X-ray emitting region in AGN.  相似文献   

7.
The Unified Model of active galactic nuclei (AGN) predicts that the sole difference between type 1 and 2 Seyfert galaxies nuclei is the viewing angle with respect to an obscuring structure around the nucleus. High-energy photons above 20 keV are not affected by this absorption if the column is Compton thin, so their 30–100 keV spectra should be the same. However, the observed spectra at high energies appear to show a systematic difference, with type 1 Seyfert galaxies having Γ∼ 2.1 whereas type 2 Seyfert galaxies are harder with Γ∼ 1.9. We estimate the mass and the accretion rate of Seyferts detected in these high-energy samples, and show that they span a wide range in   L / L Edd  . Both black hole binary systems and AGN show a correlation between spectral softness and Eddington fraction, so these samples are probably heterogeneous, spanning a range of intrinsic spectral indices which are hidden in individual objects by poor signal-to-noise ratio. However, the mean Eddington fraction for the type 1 Seyfert galaxies is higher than for the type 2 Seyfert galaxies, so the samples are consistent with this being the origin of the softer spectra seen in type 1 Seyfert galaxies. We stress that high-energy spectra alone are not necessarily a clean test of Unification schemes, but that the intrinsic nuclear properties should also change with   L / L Edd  .  相似文献   

8.
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop.  相似文献   

9.
《New Astronomy Reviews》2000,44(7-9):451-453
Narrow-Line Seyfert 1s (NLS1s) are generally considered to be ‘strange’ Active Galactic Nuclei (AGNs). Surprisingly, this makes them very useful for constraining models. I discuss what happens when one attempts to qualitatively fit the NLS1 phenomenon using the stellar wind model for AGN line emission [e.g., Kazanas, ApJ (1989) 74]. The simplest way of narrowing profile bases of this model to the widths observed in NLS1s is probably to lower the mass of the supermassive black hole. In a flux-limited and redshift-limited data set, this is indeed similar to increasing L/LEdd. Because the broad line region (BLR) of the stellar line emission model scales with the tidal radius of the stars, this model predicts maximal BLR velocities of FWZI∝(L/LEdd)−1/3. This implies that the black holes of NLS1s are approximately 33=27 times less massive than those in other Seyfert 1s if the stellar line emission model is correct. Another consequence of increasing L/LEdd in this model is that it results in an increase in the wind edge densities. NLS1 spectra appear to support this result as well. Even the collateral features of NLS1s, such as the line asymmetries and continuum properties, appear to be easily explained within the context of this model. For better or worse, if the stellar wind line emission is correct, NLS1s are not much stranger than other AGNs.  相似文献   

10.
There is increasing evidence that supermassive black holes in active galactic nuclei (AGN) are scaled-up versions of Galactic black holes. We show that the amplitude of high-frequency X-ray variability in the hard spectral state is inversely proportional to the black hole mass over eight orders of magnitude. We have analysed all available hard-state data from RXTE of seven Galactic black holes. Their power density spectra change dramatically from observation to observation, except for the high-frequency (≳10 Hz) tail, which seems to have a universal shape, roughly represented by a power law of index −2. The amplitude of the tail,   C M   (extrapolated to 1 Hz), remains approximately constant for a given source, regardless of the luminosity, unlike the break or quasi-periodic oscillation frequencies, which are usually strongly correlated with luminosity. Comparison with a moderate-luminosity sample of AGN shows that the amplitude of the tail is a simple function of black hole mass,   C M = C / M   , where   C ≈ 1.25 M Hz−1  . This makes   C M   a robust estimator of the black hole mass which is easy to apply to low- to moderate-luminosity supermassive black holes. The high-frequency tail with its universal shape is an invariant feature of a black hole and, possibly, an imprint of the last stable orbit.  相似文献   

11.
The X‐ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kα fluorescence lines. We present radiative transfer modeling of the X‐ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X‐ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter‐orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X‐ray satellites should reveal this structure from iron Kα line profiles and X‐ray lightcurves. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
《New Astronomy Reviews》2000,44(7-9):427-429
Recently, reliable mass estimates for the central black holes in AGN became feasible due to emission-line reverberation techniques. Using this method as a calibrator, it is possible to determine black hole masses for a wide range of AGN, in particular NLS1s. Do NLS1s have smaller black holes than ordinary Seyfert 1 galaxies? Are their black holes smaller compared to the sizes of their host galaxies? Do they have larger L/M ratios? Do NLS1s have hotter accretion disks? I confront these questions with accretion disk theory and with the data, showing that the above may well be the case.  相似文献   

13.
We present results from a numerical study of the runaway instability of thick discs around black holes. This instability is an important issue for most models of cosmic gamma-ray bursts, where the central engine responsible for the initial energy release is such a system consisting of a thick disc surrounding a black hole. We have carried out a comprehensive number of time-dependent simulations aimed at exploring the appearance of the instability. Our study has been performed using a fully relativistic hydrodynamics code. The general relativistic hydrodynamic equations are formulated as a hyperbolic flux-conservative system and solved using a suitable Godunov-type scheme. We build a series of constant angular momentum discs around a Schwarzschild black hole. Furthermore, the self-gravity of the disc is neglected and the evolution of the central black hole is assumed to be that of a sequence of exact Schwarzschild black holes of varying mass. The black hole mass increase is thus determined by the mass accretion rate across the event horizon. In agreement with previous studies based on stationary models, we find that by allowing the mass of the black hole to grow the disc becomes unstable. Our hydrodynamical simulations show that for all disc-to-hole mass ratios considered (between 1 and 0.05), the runaway instability appears very fast on a dynamical time-scale of a few orbital periods, typically a few 10 ms and never exceeding 1 s for our particular choice of the mass of the black hole (2.5 M) and a large range of mass fluxes  ( m 10-3 M s-1)  . The implications of our results in the context of gamma-ray bursts are briefly discussed.  相似文献   

14.
Iron line emission is common in the X‐ray spectra of accreting black holes. When the line emission is broad or variable then it is likely to originate from close to the black hole. X‐ray irradiation of the accretion flow by the power‐law X‐ray continuum produces the X‐ray ‘reflection’ spectrum which includes the iron line. The shape and variability of the iron lines and reflection can be used as a diagnostic of the radius, velocity and nature of the flow. The inner radius of the dense flow corresponds to the innermost stable circular orbit and thus can be used to determine the spin of the black hole. Studies of broad iron lines and reflection spectra offer much promise for understanding how the inner parts of accretion flows (and outflows) around black holes operate. There remains great potential for XMM‐Newton to continue to make significant progress in this work. The need for high quality spectra and thus for long exposure times is paramount. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

16.
星系中心黑洞质量和核球恒星速度弥散度的紧密关系揭示出准确测量恒星速度弥散度对测定星系中心黑洞质量尤为重要.文中提供了一种利用SDSS(Sloan Digital SkySurvey)光谱测定速度弥散度及其不确定性的方法.通过对像素空间包含显著特征吸收线的4个不同谱区的拟合,得到准确测量恒星速度弥散度σ的光谱区域.文中4个拟合波段主要包含的吸收线为CaⅡK,MgⅠb三重线(波长5167.5,5172.7,5183.6(?))和CaT(CaⅡ三重线,波长8498.0,8542.1,8662.1(?)).不同区域结果表明,MgⅠb区由于受到铁族发射线影响,拟合的σ值偏低;CaⅡK线区谱线强度很弱,易受限于最小二乘法搜索算法;CaT+CaⅡK联合区得出的速度弥散度和只计算CaT区域的结果相当.利用该方法,测试了一个红移小于0.05的赛弗特星系样本,发现CaT区是测速度弥散度的最佳谱区.  相似文献   

17.
利用Blandford-Znajek过程,得出了黑洞自转与活动星系核射电噪度的关系.在假设AGN喷流的射电功率主要来自于所提取的黑洞旋转能量后,根据Falcke和Bier-mann提出的喷流-吸积盘耦合机制,估算了AGN喷流的最大射电辐射功率.通过与PG类星体样本中强射电源观测结果的比较,进一步证实强射电类星体除了其喷流方向与视向的夹角很小外,其中心的超大质量黑洞很可能是自转很快的旋转黑洞.  相似文献   

18.
This paper summarizes the soft X-ray properties of narrow-line Seyfert 1 galaxies (NLS1). NLS1 have generally steeper soft X-ray continuum slopes than Seyfert 1s with broader lines, and there exists an anticorrelation between 0.1–2.4 keV continuum slope and the FWHM of the Hβ line. Objects with steep 0.1–2.4 keV continuum slopes and Hβ FWHM > 3000 km s−1 are clearly discriminated against by nature. When simple power-law models are fit to the data, photon indices reach values up to about 5, much higher than is usually seen in Seyfert 1s. Models with smaller mass black holes and/or higher Eddington fractions show some promise to explain the relation between the FWHM of the Hβ line and the X-ray continuum slope. We further report evidence for persistent gaint and rapid variability in the ultrasoft narrow-line Seyfert 1 galaxy IRAS 13224–3809. We have examined possible explanations for the gaint variability. Unusually strong relativistic effects provide a plausible explanation of the X-ray data. Relativistic boosting effects may be relevant to understanding the strong X-ray variability of some steep spectrum Seyferts more generally.  相似文献   

19.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

20.
The redshift, central black hole mass and accretion rate are important parameters when studying the AGN evolution. The central black hole masses for 172 quasars and Seyfert galaxies are calculated in this paper using the reverberation mapping method. The distributions of central black hole masses, redshifts and the Eddington accretion rates are analyzed, to verify the transition from the quasar to the Seyfert galaxy in the course of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号