首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the contribution of microlensing to the AGN Fe Kα line and X‐ray continuum amplification and variation. To investigate the variability of the line and X‐ray continuum, we studied the effects of microlensing on quasar X‐ray spectra produced by crossing of a microlensing pattern across a standard relativistic accretion disk. To describe the disk emission we used a ray tracing method considering both metrics, Schwarzschild and Kerr. We found that the Fe Kα and continuum may experience significant amplification by a microlensing event (even for microlenses of very small mass). Also, we investigate a contribution of microlensing to the X‐ray variability of high‐redshifted QSOs, finding that cosmologically distributed deflector may contribute significantly to the X‐ray variability of high‐redshifted QSOs (z > 2). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present XMM–Newton /EPIC spectra for the Laor et al. sample of Palomar Green (PG) quasars. We find that a power law provides a reasonable fit to the 2–5 keV region of the spectra. Excess soft X-ray emission below 2 keV is present for all objects, with the exception of those known to contain a warm absorber. However, a single power law is a poor fit to the 0.3–10.0 keV spectrum and instead we find that a simple model, consisting of a broken power law (plus an iron line), provides a reasonable fit in most cases. The equivalent width of the emission line is constrained in just 12 objects but with low (<2σ) significance in most cases. For the sources whose spectra are well fitted by the broken-power-law model, we find that various optical and X-ray line and continuum parameters are well correlated; in particular, the power-law photon index is well correlated with the FWHM of the Hβ line and the photon indices of the low- and high-energy components of the broken power law are well correlated with each other. These results suggest that the 0.3–10 keV X-ray emission shares a common (presumably non-thermal) origin, as opposed to suggestions that the soft excess is directly produced by thermal disc emission or via an additional spectral component. We present XMM–Newton Optical Monitor (OM) data, which we combine with the X-ray spectra so as to produce broad-band spectral energy distributions (SEDs), free from uncertainties due to long-term variability in non-simultaneous data. Fitting these optical–UV spectra with a Comptonized disc model indicates that the soft X-ray excess is independent of the accretion disc, confirming our interpretation of the tight correlation between the hard and soft X-ray spectra.  相似文献   

3.
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
I summarize here recent work on the physical conditions in blazar jets including the comparison between emission regions at subparsec scales (1016−17 cm) and at very large scales (1022−24 cm) recently detected in X-rays by Chandra. The jet properties at both scales together with those of the presumed associated accretion disk (1014−15 cm) suggest the possibility of a unified scenario for the origin and propagation of jets in strong radio sources.  相似文献   

5.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We report on the iron Kα line properties of a sample of Seyfert galaxies observed with the XMM‐Newton EPIC pn instrument. Using a systematic and uniform analysis, we find that complexity at iron‐K is extremely common in the XMM‐Newton spectra. Once appropriate soft X‐ray absorption, narrow 6.4 keV emission and associated Compton reflection are accounted for, ∼75% of the sample show an improvement when a further component is introduced. The typical properties of the broad emission are both qualitatively and quantitatively consistent with previous results from ASCA. The complexity is in general very well described by relativistic accretion disk models. In most cases the characteristic emission radius is constrained to be within ∼50R g, where strong gravitational effects become important. We find in about 1/3 of the sample the accretion disk interpretation is strongly favoured over competing models. In a few objects no broad line is apparent. We find evidence for emission within 6R g in only two cases, both of which exhibit highly complex absorption. Evidence for black hole spin based on the X‐ray spectra therefore remains tentative. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We report on partially overlapping XMM–Newton (∼260 ks) and Suzaku (∼100 ks) observations of the iron K band in the nearby, bright type 1 Seyfert galaxy Mrk 509. The source shows a resolved neutral Fe K line, most probably produced in the outer part of the accretion disc. Moreover, the source shows further emission bluewards of the 6.4 keV line due to ionized material. This emission is well reproduced by a broad line produced in the accretion disc, while it cannot be easily described by scattering or emission from photoionized gas at rest. The summed spectrum of all XMM–Newton observations shows the presence of a narrow absorption line at 7.3 keV produced by highly ionized outflowing material. A spectral variability study of the XMM–Newton data shows an indication for an excess of variability at 6.6–6.7 keV. These variations may be produced in the red wing of the broad ionized line or by variation of a further absorption structure. The Suzaku data indicate that the neutral Fe K α line intensity is consistent with being constant on long time-scales (of a few years), and they also confirm as most likely the interpretation of the excess blueshifted emission in terms of a broad ionized Fe line. The average Suzaku spectrum differs from the XMM–Newton one in the disappearance of the 7.3 keV absorption line and around 6.7 keV, where the XMM–Newton data alone suggested variability.  相似文献   

8.
Initial results on the iron K‐shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed Time program are reviewed. This paper discusses a small sample of Compton‐thin Seyferts observed to date with Suzaku; namely MCG‐5‐23‐16, MCG‐6‐30‐15, NGC4051, NGC3516, NGC2110, 3C 120 and NGC2992. The broad iron Kα emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG‐6‐30‐15 shows the most extreme relativistic blurring of all the objects, the red‐wing of the line requires the inner accretion disk to extend inwards to within 2.2R g of the black hole, in agreement with the XMM‐Newton observations. Strong excess emission in the Hard X‐ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton‐thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG‐6‐30‐15, MCG‐5‐23‐16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power‐law, while the iron line and reflection component remain relatively constant. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Suzaku observations of Markarian 335: evidence for a distributed reflector   总被引:1,自引:0,他引:1  
We report on a 151-ks net exposure Suzaku observation of the narrow-line Seyfert 1 galaxy Mrk 335. The 0.5–40 keV spectrum contains a broad Fe line, a strong soft excess below about 2 keV and a Compton hump around 20–30 keV. We find that a model consisting of a power law and two reflectors provides the best fit to the time-averaged spectrum. In this model, an ionized, heavily blurred, inner reflector produces most of the soft excess, while an almost neutral outer reflector (outside ∼ 40 r g) produces most of the Fe line emission. The spectral variability of the observation is characterized by spectral hardening at very low count rates. In terms of our power-law + two-reflector model it seems like this hardening is mainly caused by pivoting of the power law. The rms spectrum of the entire observation has the curved shape commonly observed in active galactic nuclei, although the shape is significantly flatter when an interval which does not contain any deep dip in the light curve is considered. We also examine a previous 133-ks XMM–Newton observation of Mrk 335. We find that the XMM–Newton spectrum can be fitted with a similar two-reflector model as the Suzaku data and we confirm that the rms spectrum of the observation is flat. The flat rms spectra, as well as the high-energy data from the Suzaku PIN detector, disfavour an absorption origin for the soft excess in Mrk 335.  相似文献   

10.
Current, accumulating evidence for (mildly) relativistic blue‐ and red‐shifted absorption lines in AGNs is reviewed. XMM‐Newton and Chandra sensitive X‐ray observations are starting to probe not only the kinematics (velocity) but also the dynamics (accelerations) of highly ionized gas flowing in‐and‐out from, likely, a few gravitational radii from the black hole. It is thus emphasized that X‐ray absorption‐line spectroscopy provides new potential to map the accretion flows near black holes, to probe the launching regions of relativistic jets/outflows, and to quantify the cosmological feedback of AGNs. Prospects to tackle these issues with future high energy missions are briefly addressed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present preliminary results from a 150 ks Suzaku observation of the Seyfert 1 galaxy NGC 3516. Suzaku 's wide bandpass has enabled us to deconvolve the broadband emitting and absorbing components in this object, breaking model degeneracies inherent in previous, smaller‐bandpass spectra. The primary power‐law continuum is absorbed by an ionized absorber as well as a partial‐covering absorber; the column density of the ionized absorber has increased by a factor of ∼3 since XMM‐Newton observations in 2001. We detect a soft power‐law component which may be scattered emission. We confirm the presence of the broad Fe line, finding a eV equivalent width line that indicates emission extending down to a few Schwarzschild radii. Models which exclude either the broad line or the partial‐covering absorber are rejected. Suzaku 's high effective area and low background near 6 keV also allow us to resolve the narrow Fe K emission line; we find a FWHM velocity width near 4000 km s–1, commensurate with Broad Line Region velocities. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present the analysis of optical and X‐ray XMM‐Newton data of the source 4U 1344‐60. On the basis of the optical data we propose to classify 4U 1344‐60 as a Seyfert 1.5 galaxy and we measured a redshift value z = 0.012 ± 0.001. The observed X‐ray spectrum is complex. The continuum emission can be described as a power law obscured by two neutral absorption components. 4U 1344‐60 exhibits a broad and skewed iron line at 6.4 keV most likely originated in a few gravitational radius of an accretion disc. The analysis also reveals the presence of two narrow emission line‐like features at ∼4.9 keV and ∼5.3 keV. Assuming that hot spots on the surface of the accretion disc, orbiting very close to the black hole is responsible of these emission lines, the accretion disc would present an inclination of 20° and the active regions would be located in the 6–10 R g radius range. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present results of new ASCA observations of the low-luminosity active galactic nucleus (LLAGN) NGC 4579 obtained on 1998 December 18 and 28, and we report on the detection of variability of an iron K emission line. The X-ray luminosities in the 2-10 keV band for the two observations are nearly identical (LX approximately 2x1041 ergs s(-1)), but they are approximately 35% larger than that measured in 1995 July by Terashima et al. An Fe K emission line is detected at 6.39+/-0.09 keV (source rest frame), which is lower than the line energy 6.73+0.13-0.12 keV in the 1995 observation. If we fit the Fe lines with a blend of two Gaussians centered at 6.39 and 6.73 keV, the intensity of the 6.7 keV line decreases, while the intensity of the 6.4 keV line increases, within an interval of 3.5 yr. This variability rules out thermal plasmas in the host galaxy as the origin of the ionized Fe line in this LLAGN. The detection and variability of the 6.4 keV line indicates that cold matter subtends a large solid angle viewed from the nucleus and that it is located within approximately 1 pc from the nucleus. It could be identified with an optically thick standard accretion disk. If this is the case, a standard accretion disk is present at the Eddington ratio of Lbol/LEdd approximately 2x10-3. A broad disk-line profile is not clearly seen, and the structure of the innermost part of accretion disk remains unclear.  相似文献   

14.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

15.
A model for the inner regions of accretion flows is presented where, owing to disc instabilities, cold and dense material is clumped into deep sheets or rings. Surrounding these density enhancements is hot, tenuous gas where coronal dissipation processes occur. We expect this situation to be most relevant when the accretion rate is close to Eddington and the disc is radiation-pressure-dominated, and so may apply to narrow-line Seyfert 1 (NLS1) galaxies. In this scenario, the hard X-ray source is obscured for most observers, and so the detected X-ray emission would be dominated by reflection off the walls of the sheets. A simple Comptonization calculation shows that the large photon-indices characteristic of NLS1s would be a natural outcome of two reprocessors closely surrounding the hard X-ray source. We test this model by fitting the XMM-Newton spectrum of the NLS1 1H  0707–495  between 0.5 and 11 keV with reflection-dominated ionized disc models. A very good fit is found with three different reflectors each subject to the same  Γ=2.35  power law. An iron overabundance is still required to fit the sharp drop in the spectrum at around 7 keV. We note that even a small corrugation of the accretion disc may result in  Γ>2  and a strong reflection component in the observed spectrum. Therefore, this model may also explain the strength and the variability characteristics of the MCG–6-30-15 Fe K α line. The idea needs to be tested with further broad-band XMM-Newton observations of NLS1s.  相似文献   

16.
We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5–10 keV spectrum is rather complex and consists of several components: (i) a hard X-ray power law heavily absorbed by a column density of about 3-1023 cm−2, (ii) a narrow Fe Kα line at 6.4 keV, (iii) soft continuum emission well above the extrapolation of the absorbed hard power law and (iv) a narrow emission line at ∼0.9 keV. The line energy, consistent with highly ionized neon (Ne IX ), may indicate that the soft X-ray emission is derived from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.  相似文献   

17.
With the launch of XMM‐Newton in 1999, two Narrow‐Line Seyfert 1 Galaxies (NLS1s) have been detected (IRAS 13224–3809 and 1H 0707–495) showing sharp spectral drops at energies equal or above the neutral Fe K edge at 7.1 keV without any narrow Fe K reemission. In this paper I summarize our present knowledge on the observed properties of sharp high‐energy spectral drops. I list the problems presently arising from the reflection dominated and the optically thick disc models. Finally, I present an alternative solution which consists of a combination of the accretion disc model and the reflection dominated model. This might solve the problems of the standard accretion disc model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We examine the XMM X-ray spectrum of the low-ionisation nuclear emission-line region (LINER)-AGN NGC 7213, which is best fit with a power law, Kα emission lines from Fe i, Fe xxv and Fe xxvi and a soft X-ray collisionally ionised thermal plasma with kT = 0.18+0.03−0.01 keV. We find a luminosity of 7× 10−4 LEdd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M 81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).  相似文献   

19.
We present the analysis of X‐ray spectral variability made on a sample of 7 Seyfert 1 bright galaxies, using XMM‐Newton data. From the “XMM‐Newton Science Archive” we selected those bright Seyfert 1 showing one or more prominent flares in their 2–10 keV light curves. For each of them we extracted spectra in 3 different time intervals: before, during and after the flare. We fitted them with a simple power law and then shifted a narrow emission and absorption line template across the 2.5–10 keV data, in order to investigate the presence of line‐like features with a confidence level greater than 99%. Some highly significant features were detected in 3 out of 7 sources studied. In particular, the 3 sources, namely PG 1211+143, NGC 4051 and NGC 3783, showed the presence of a variable emission feature in the 4.5–5.8 keV band, characterized by an increase of its intensity after the flare peak. Because of the observed variability pattern, this feature seems to be ascribable to a reverbered redshifted relativistic component of the Fe K line. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The physical nature of the material responsible for the high-velocity broad absorption line (BAL) features seen in a small fraction of quasar spectra has been the subject of debate since their discovery. This has been especially compounded by the lack of observational probes of the absorbing region. In this paper we examine the role of 'microlenses' in external galaxies in the observed variability in the profiles of BALs in multiply imaged quasars. Utilizing realistic models for both the BAL region and the action of an ensemble of microlensing masses, we demonstrate that stars at cosmological distances can provide an important probe of the physical state and structure of material at the heart of these complex systems. Applying these results to the macrolensed BAL quasar system H1413+117, the observed spectral variations are readily reproduced, but without the fine-tuning requirements of earlier studies which employ more simplistic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号