首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the iron Kα line properties of a sample of Seyfert galaxies observed with the XMM‐Newton EPIC pn instrument. Using a systematic and uniform analysis, we find that complexity at iron‐K is extremely common in the XMM‐Newton spectra. Once appropriate soft X‐ray absorption, narrow 6.4 keV emission and associated Compton reflection are accounted for, ∼75% of the sample show an improvement when a further component is introduced. The typical properties of the broad emission are both qualitatively and quantitatively consistent with previous results from ASCA. The complexity is in general very well described by relativistic accretion disk models. In most cases the characteristic emission radius is constrained to be within ∼50R g, where strong gravitational effects become important. We find in about 1/3 of the sample the accretion disk interpretation is strongly favoured over competing models. In a few objects no broad line is apparent. We find evidence for emission within 6R g in only two cases, both of which exhibit highly complex absorption. Evidence for black hole spin based on the X‐ray spectra therefore remains tentative. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present the analysis of optical and X‐ray XMM‐Newton data of the source 4U 1344‐60. On the basis of the optical data we propose to classify 4U 1344‐60 as a Seyfert 1.5 galaxy and we measured a redshift value z = 0.012 ± 0.001. The observed X‐ray spectrum is complex. The continuum emission can be described as a power law obscured by two neutral absorption components. 4U 1344‐60 exhibits a broad and skewed iron line at 6.4 keV most likely originated in a few gravitational radius of an accretion disc. The analysis also reveals the presence of two narrow emission line‐like features at ∼4.9 keV and ∼5.3 keV. Assuming that hot spots on the surface of the accretion disc, orbiting very close to the black hole is responsible of these emission lines, the accretion disc would present an inclination of 20° and the active regions would be located in the 6–10 R g radius range. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Initial results on the iron K‐shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed Time program are reviewed. This paper discusses a small sample of Compton‐thin Seyferts observed to date with Suzaku; namely MCG‐5‐23‐16, MCG‐6‐30‐15, NGC4051, NGC3516, NGC2110, 3C 120 and NGC2992. The broad iron Kα emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG‐6‐30‐15 shows the most extreme relativistic blurring of all the objects, the red‐wing of the line requires the inner accretion disk to extend inwards to within 2.2R g of the black hole, in agreement with the XMM‐Newton observations. Strong excess emission in the Hard X‐ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton‐thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG‐6‐30‐15, MCG‐5‐23‐16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power‐law, while the iron line and reflection component remain relatively constant. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present a brief account of the theory on which the novel method of ‘Fourier‐resolved spectroscopy’ is based. We summarize the results from the past application of this method to the study of Galactic Black Hole candidate sources and MCG‐6‐30‐15, and we present new results from the Fourier‐resolved spectroscopy of archival XMM‐Newton data of five AGN, namely, Mrk 766, NGC 3516, NGC 3783, NGC 4051 and Ark 564. When we combine all the past and present results from Galactic sources and AGN, we find that the slope of the Fourier‐resolved spectra in accreting black hole systems decreases with increasing frequency as ∝ f –0.25, irrespective of whether the system is in its High or Low state. We find significant evidence that the iron line in Mrk 766, NGC 3783 and NGC 4051 is variable on time scales ∼1 day – 1 hour. There is an indication that, just like in Galactic sources, the equivalent width of the line in the Fourier‐resolved spectra of AGN decreases with increasing frequency. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The X‐ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kα fluorescence lines. We present radiative transfer modeling of the X‐ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X‐ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter‐orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X‐ray satellites should reveal this structure from iron Kα line profiles and X‐ray lightcurves. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present preliminary results from a 150 ks Suzaku observation of the Seyfert 1 galaxy NGC 3516. Suzaku 's wide bandpass has enabled us to deconvolve the broadband emitting and absorbing components in this object, breaking model degeneracies inherent in previous, smaller‐bandpass spectra. The primary power‐law continuum is absorbed by an ionized absorber as well as a partial‐covering absorber; the column density of the ionized absorber has increased by a factor of ∼3 since XMM‐Newton observations in 2001. We detect a soft power‐law component which may be scattered emission. We confirm the presence of the broad Fe line, finding a eV equivalent width line that indicates emission extending down to a few Schwarzschild radii. Models which exclude either the broad line or the partial‐covering absorber are rejected. Suzaku 's high effective area and low background near 6 keV also allow us to resolve the narrow Fe K emission line; we find a FWHM velocity width near 4000 km s–1, commensurate with Broad Line Region velocities. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We report preliminary results from a targeted investigation on quasars containing damped Lyman‐α absorption (DLA) lines as well strong metal absorption lines, carried out with the Potsdam Multi Aperture Spectrophotometer (PMAS). We search for line‐emitting objects at the same redshift as the absorption lines and close to the line of sight of the QSOs. We have observed and detected the already confirmed absorbing galaxies in Q2233+131 (zabs = 3.15) and Q0151+045 (zabs=0.168), while failing to find spectral signatures for the z = 0.091 absorber in Q0738+313. From the Q2233+131 DLA galaxy, we have detected extended Lyα emission from an area of 3″ ×5″. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present preliminary results from a set of near‐IR integral field spectroscopic observations of the central, star‐burst, regions of the barred spiral galaxy M83, obtained with CIRPASS on Gemini‐S. We present maps in the Paβ and [FeII] 1.257 μm emission lines which appear surprisingly different. We outline the procedure in which we will use Paβ emission line strengths and measures of CO absorption to determine the relative and absolute ages of individual star‐forming knots in the central kpc region of M83. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
GRB 100418A was an intermediate duration GRB detected by Swift. It showed an initially dim optical afterglow that had a late increase in brightness, reaching its maximum several hours after the burst onset, unlike typical afterglows that peak tens of seconds after. It also displayed a bright X‐ray and radio counterpart. In this paper we present the observations of the afterglow obtained with X‐shooter. Three epochs were obtained, 0.4, 1.4, and 2.4 days after the burst. In these spectra, each covering the range from 3000 to 24800 Å, we detect abundant absorption features with 4 velocity components, and emission lines from the host galaxy with 2 additional velocity components. In one single velocity component, we detect a Fe II* 2396 Å fine structure feature which disappears from the first to the second epoch indicating that it is due to the effect of the GRB radiation on its environment. We consider it to be the closest absorption component to the GRB itself, for which we determine a redshift of z = 0.6239 ± 0.0002. From the Hα to [N II] ratio we determine a host galaxy metallicity of 0.5 solar (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We consider the contribution of microlensing to the AGN Fe Kα line and X‐ray continuum amplification and variation. To investigate the variability of the line and X‐ray continuum, we studied the effects of microlensing on quasar X‐ray spectra produced by crossing of a microlensing pattern across a standard relativistic accretion disk. To describe the disk emission we used a ray tracing method considering both metrics, Schwarzschild and Kerr. We found that the Fe Kα and continuum may experience significant amplification by a microlensing event (even for microlenses of very small mass). Also, we investigate a contribution of microlensing to the X‐ray variability of high‐redshifted QSOs, finding that cosmologically distributed deflector may contribute significantly to the X‐ray variability of high‐redshifted QSOs (z > 2). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
What are the origins of the soft X‐ray line emission from non‐AGN galaxies? XMM‐Newton RGS spectra of nearby non‐AGN galaxies (including starforming ones: M82, NGC 253, M51, M83, M61, NGC 4631, M94, NGC 2903, and the Antennae galaxies, as well as the inner bulge of M31) have been analyzed. In particular, the Kα triplet of O VII shows that the resonance line is typically weaker than the forbidden and/or inter‐combination lines. This suggests that a substantial fraction of the emission may not arise directly from optically thin thermal plasma, as commonly assumed, and may instead originate at its interface with neutral gas via charge exchange. This latter origin naturally explains the observed spatial correlation of the emission with various tracers of cool gas in some of the galaxies. However, alternative scenarios, such as the resonance scattering by the plasma and the relic photo‐ionization by AGNs in the recent past, cannot be ruled out, at least in some cases, and are being examined. Such X‐ray spectroscopic studies are important to the understanding of the relationship of the emission to various high‐energy feedback processes in galaxies (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present UBVIC photometry of starlike objects in the central region of NGC 3077. The colour‐colour and colour‐magnitude diagrams of the objects are discussed. Many of the objects under consideration, starlike from the ground, are probably dense young star clusters (super star clusters, SSC). Ages spreading over ∼4 to ∼150 Myr are estimated for most of these objects. Sakai and Madore (2001) found enhanced star formation ∼30–125 Myr ago also in the halo of this galaxy; thus, high star forming activity has occurred within the entire galaxy (centre and halo) since ∼130…150 Myr. Having ended in the outer regions about 30 Myr ago, it is going on near the centre with full vigour. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We address the problem of the factors contributing to a peak color trend of old metal‐rich globular cluster (MRGC) populations with mass of their hosts, early‐type galaxies and spheroidal subsystems of spiral ones (spheroids). The colormass trend is often converted to a metallicity‐mass trend under the assumption that age effects are small or negligible. While direct estimates of the ages of MRGC populations neither can rule out nor reliably support the populations' age trend, key data on timing of the formation of spheroids and other indirect evidence imply it in the sense: the more massive spheroid the older on average its MRGC population. We show that the contribution of an allowable age trend of the MRGC populations to their peak color trend can achieve up to ∼50% or so. In this event the comparable value of the color trend, ∼30%, is due to alpha‐element ratio systematic variations of the order of Δ[α /Fe] ≈ 0.1 to 0.2 dex because of a correlation between the [α /Fe] ratios and age. Hence a systematic variation of exactly [Fe/H] ratios may turn out to be less significant among the contributors, and its range many times lower, i.e. of the order of Δ[Fe/H]∼0.1 or even none, than the corresponding range deduced by assuming no age trend. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Current, accumulating evidence for (mildly) relativistic blue‐ and red‐shifted absorption lines in AGNs is reviewed. XMM‐Newton and Chandra sensitive X‐ray observations are starting to probe not only the kinematics (velocity) but also the dynamics (accelerations) of highly ionized gas flowing in‐and‐out from, likely, a few gravitational radii from the black hole. It is thus emphasized that X‐ray absorption‐line spectroscopy provides new potential to map the accretion flows near black holes, to probe the launching regions of relativistic jets/outflows, and to quantify the cosmological feedback of AGNs. Prospects to tackle these issues with future high energy missions are briefly addressed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present the analysis of X‐ray spectral variability made on a sample of 7 Seyfert 1 bright galaxies, using XMM‐Newton data. From the “XMM‐Newton Science Archive” we selected those bright Seyfert 1 showing one or more prominent flares in their 2–10 keV light curves. For each of them we extracted spectra in 3 different time intervals: before, during and after the flare. We fitted them with a simple power law and then shifted a narrow emission and absorption line template across the 2.5–10 keV data, in order to investigate the presence of line‐like features with a confidence level greater than 99%. Some highly significant features were detected in 3 out of 7 sources studied. In particular, the 3 sources, namely PG 1211+143, NGC 4051 and NGC 3783, showed the presence of a variable emission feature in the 4.5–5.8 keV band, characterized by an increase of its intensity after the flare peak. Because of the observed variability pattern, this feature seems to be ascribable to a reverbered redshifted relativistic component of the Fe K line. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present BVIc photometry of the brightest stars andcompact star clusters in NGC 2976, a dwarf galaxy in the interacting M81/M82 group. Deep CCD images of the galaxy were obtained with the 6m‐Telescope of the Special Astrophysical Observatory (Russia) at arcsec resolution. About 290 young stars and concentrated young clusters were measured. Supplementary data in the ultraviolet are taken from the literature. The extinction to the measured objects is comparatively low, E(BV) ∼ 0.15 .. 0.20 mag. We estimate the ages of youngest resolved stars and concentrated star clusters to be ∼5 · 106 years. This population is concentrated in a broad stripe facing M81. In the central disk the population is a bit older, about 8 · 106 years, this may be a hint to an outward spreading star formation process. The metallicity of the disk population is estimatedas solar (z ∼ 0.02) from a fitting to Padova theoretical stellar isochrones.  相似文献   

18.
We present recent results from optical photometric and spectroscopic observations of the pre‐main sequence star V1184 Tau (CB 34V). The star is associated with the Bok globule CB 34 and was considered as a FUOR candidate in previous studies. Our photometric data obtained from October 2000 to April 2003 show that the stellar brightness varies with an amplitude of about 0.m 5 (I ), but from August 2003 the photometric behavior of the star has changed dramatically. Three deep brightness minima (ΔI ∼ 4m.2) were observed during the past two years. The analysis of available photometric data suggests that V1184 Tau shows two types of variability produced (1) by rotation of large cool spotted surface and (2) by occultation from circumstellar clouds of dust or from features of a circumstellar disk. The behavior of the VI index indicates that the star becomes redder towards minimum light, but from a certain turning point (V ∼ 18m.2) it gets bluer and is fading further. Five medium dispersion optical spectra of V1184 Tau were obtained in the period 2001–2004. Signi.cant changes in the profile and strength of the emission lines in the spectrum of V1184 Tau were found. During minimum light the equivalent width of the Hα emission line increases from 4 Å to 9 Å. The [O I] lines (λλ 6003, 6363 Å) are also seen in emission while the sodium doublet keeps its absorption strength and equivalent width. The possibility to reconstruct the historical light curve of V1184 Tau using photographical plate archives is brie.y discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Hadronic cosmic rays of energies below about 100 MeV nucleon–1 are thought to be an important component of the Galactic ecosystem. However, since these particles cannot be detected near Earth due to the solar modulation effect, their composition and flux in the interstellar medium are very uncertain. Atomic interactions of low‐energy cosmic rays with interstellar gas can produce a characteristic nonthermal X‐ray emission comprising very broad lines from de‐excitations in fast ions following charge exchange. We suggest that broad lines at ∼0.57 and ∼0.65 keV could be detected from a dark molecular cloud in the local interstellar medium. These lines would be produced by fast oxygen ions of kinetic energies around 1 MeV nucleon–1 (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Our spatial and spectral analysis of a recent deep Chandra observation of H1413+117 confirms a microlensing event in a previous Chandra observation of this object performed about 5 years earlier. We present constraints on the structure of H1413+117 based on the time‐scale of this microlensing event. The analysis of the combined spectrum of the images indicates the presence of two emission line peaks at rest‐frame energies of 5.35 keV and 6.32 keV and detected at the ≳97% and ≳99% confidence levels, respectively. The double peaked Fe emission is fit well with an accretion disk‐line model, however, the best‐fit accretion disk model parameters are neither well constrained nor unique. Another possible interpretation of the Fe emission is fluorescent Fe emission from the back‐side of the wind. Additional observations are required to constrain better the model parameters. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号