首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The observations of spread F during the nighttime hours (0000–0500 LT) have been statistically analyzed based on data of Tokyo, Akita, Wakkanai, and Yamagawa Japan vertical ionospheric sounding stations for the time intervals a month before and a month after an earthquake. The disturbances in the probability of spread F appearance before an earthquake are revealed against a background of the variations depending on season, solar activity cycle, geomagnetic and solar disturbances. The days with increased solar (Wolf number W > 100) and geomagnetic (ΣK > 30) activity are excluded from the analysis. The spread F effects are considered for more than a hundred earthquakes with magnitude M > 5 and epicenter depth h < 80 km at distances of R < 1000 km from epicenters to the vertical sounding station. An average decrease in the spread F occurrence probability one-two weeks before an earthquake has been revealed using the superposed epoch method (the probability was minimal approximately ten days before the event and then increased until the earthquake onset). Similar results are obtained for all four stations. The reliability of the effect has been estimated. The dependence of the detected effect on the magnitude and distance has been studied.  相似文献   

2.
We have studied changes in the ionosphere prior to strong crustal earthquakes with magnitudes of М ≥ 6.5 based on the data from the ground-based stations of vertical ionospheric sounding Kokobunji, Akita, and Wakkanai for the period 1968–2004. The data are analyzed based on hourly measurements of the virtual height and frequency parameters of the sporadic E layer and critical frequency of the regular F2 layer over the course of three days prior to the earthquakes. In the studied intervals of time before all earthquakes, anomalous changes were discovered both in the frequency parameters of the Es and F2 ionospheric layers and in the virtual height of the sporadic E layer; the changes were observed on the same day at stations spaced apart by several hundred kilometers. A high degree of correlation is found between the lead-time of these ionospheric anomalies preceding the seismic impact and the magnitude of the subsequent earthquakes. It is concluded that such ionospheric disturbances can be short-term ionospheric precursors of earthquakes.  相似文献   

3.
The consideration of the relation between the daytime and nighttime values of the critical frequency F2, foF2 of the ionospheric F2 layer, started in the previous publication of the authors, is continued. The main regularities in variations in the correlation coefficient R(foF2) characterizing this relation are confirmed using larger statistical material (more ionospheric stations and longer observational series). Long-term trends in the R(foF2) value are found: at all stations the negative value of R(foF2) increases with time after 1980.  相似文献   

4.
Using the foF2 database obtained from satellites and ground-based ionospheric stations, we have constructed a global empirical model of the critical frequency of the ionospheric F2-layer (SDMF2—Satellite and Digisonde Data Model of the F2 layer) for quiet geomagnetic conditions (Kp < 3). The input parameters of this model are the geographical coordinates, UT, day, month, year, and the integral index F10.7 (day, τ = 0.96) of solar activity for a given day. The SDMF2 model was based on the Legendre method for the spatial expansion of foF2 monthly medians to 12 in latitude and 8 in longitude of spherical harmonics. The resulting spatial coefficients have been expanded by the Fourier method in three spherical harmonics with respect to UT. The effect of the saturation of critical frequency of the ionospheric F2-layer at high solar activity was described in the SDMF2 model by foF2 as a logarithmic function of F10.7 (day, τ = 0.96). The difference between the SDMF2 and IRI models is a maximum at low solar activity as well as in the Southern Hemisphere and in the oceans. The testing on the basis of ground-based and satellite data has indicated that the SDMF2 model is more accurate than the IRI model.  相似文献   

5.
Based on the known forecast of solar cycle 25 amplitude (Rz max ≈ 50), the first assessments of the shape and amplitude of this cycle in the index of solar activity F10.7 (the magnitude of solar radio flux at the 10.7 cm wavelength) are given. It has been found that (F10.7)max ≈ 115, which means that it is the lowest solar cycle ever encountered in the history of regular ionospheric measurements. For this reason, many ionospheric parameters for cycle 25, including the F2-layer peak height and critical frequency (hmF2 and foF2), will be extremely low. For example, at middle latitudes, typical foF2 values will not exceed 8–10 MHz, which makes ionospheric heating ineffective in the area of upper hybrid resonance at frequencies higher than 10 MHz. The density of the atmosphere will also be extremely low, which significantly extends the lifetime of low-orbit satellites. The probability of F-spread will be increased, especially during night hours.  相似文献   

6.
7.
The 40-year period of observations of short-term variations (with characteristic times of up to 1–2 days) in the critical frequency of the ionospheric F2 layer (foF2) is analyzed. The continuous (with a step of 1 h) series of fluctuations (F) of the foF2 critical frequency (with eliminated daily variations) has been calculated using the hourly variations in foF2 at Moscow stations. The fractal dimension (FRH) of the fluctuations, characterizing short-term variations in foF2, has been determined and analyzed on a 30-day interval, using the Higuchi method. It has been established that FRH estimates substantially change in time. The 11-year cycle, which is in antiphase with the solar cycle, and the total annual and semiannual variations, similar to the variations observed in the normalized critical frequency of the E region and in the electron density of the D region, are clearly defined in these changes. Thus, the parameters of fast variations in the ionospheric F2 layer are affected by the phase of the 11-year solar cycle and by the position of the Earth in the orbit or seasonal variations in the atmosphere.  相似文献   

8.
Variations in the frequency of occurrence of riometer absorption, minimum frequency of reflection of the ionospheric F layer, minimum height, and height of maximum electron density of the ionospheric F layer near the solar minimum have been studied. Application of the superposed epoch technique has detected the Moon phase effect on these ionospheric parameters. This effect was: three events per day in the occurrence of riometer absorption, 0.056 MHz in the minimum frequency of reflection of the F layer, and 2.6 and 6.7 km, in the change of the minimum height of reflection and height of reflection from the region with maximum electron density of the ionospheric F layer, respectively. The lunar tide action changes the ionospheric conductivity and, thus, influences the current systems of the magnetosphere. Through changes of magnetospheric currents, the Moon phase effect is exhibited in the Ap and Dst indices and is 4.3 and 4.25 nT, respectively.  相似文献   

9.
We have analyzed the behavior of the F2 layer parameters during nighttime periods of enhanced electron concentration by the results of vertical sounding of the ionosphere carried out with five-minute periodicity in Almaty (76°55′ E, 43°15′ N) in 2001–2012. The results are obtained within the frameworks of the unified concept of different types of ionospheric plasma disturbances manifested as variations in the height and half-thickness of the layer accompanied by an increase and decrease of N m F2 at the moments of maximum compression and expansion of the layer. A good correlation is found between height h Am , which corresponds to the maximum increase, and layer peak height h m F, while h Am is always less than h m F. The difference between h Am and h m F linearly increases with increasing h m F. Whereas the difference is ~38 km for h m F = 280 km, it is ~54 km for h m F = 380 km. Additionally, the correlation is good between the increase in the electron concentration in the layer maximum ΔN m and the maximum enhancement at the fixed height ΔN; the electron concentration enhancement in the layer maximum is about two to three times lower than its maximum enhancement at the fixed height.  相似文献   

10.
The influence of the earthquake probability diurnal variation on specific features in the weekend effect in global seismic activity is revealed. The dependence of the global earthquake number on the local time and its possible relation to a quiet solar diurnal variation (Sq) in the geomagnetic field have been considered in detail. It has been indicated that a stable diurnal effect, which has a maximum near midnight and a minimum near local noon, exists in the global seismicity of the Earth. The diurnal variation amplitude changes insignificantly during days of week and substantially decreases (by a factor of almost 3) on Saturday and Sunday. The weekend effect is not revealed during “local nights.” Since the daily effect of a quiet solar diurnal variation (Sq) should not depend on days of week, we arrive at the conclusion that the diurnal variation in global seismicity evidently contains the anthropogenic activity product. The Sunday effect in the earthquake number decreases over the course of time and is most probably real but weak and not stationary since weekly variations occur against a background (or under the action) of stronger variations, i.e., an increase in the earthquake number and diurnal variations.  相似文献   

11.
Based on an analysis of data from the European ionospheric stations at subauroral latitudes, it has been found that the main ionospheric trough (MIT) is not characteristic for the monthly median of the F2-layer critical frequency (foF2), at least for low and moderate solar activity. In order to explain this effect, the properties of foF2 in the nocturnal subauroral ionosphere have been additionally studied for low geomagnetic activity, when the MIT localization is known quite reliably. It has been found that at low and moderate solar activity during night hours in winter, the foF2 data from ionospheric stations are often absent in the MIT area. For this reason, a model of the foF2 monthly median, which was constructed from the remaining data of these stations, contains no MIT or a very weakly pronounced MIT.  相似文献   

12.
Specific variations in the critical frequency of the ionospheric F 2 layer during magnetospheric substorms have been found based on the data of vertical sounding stations in Europe and North America. Maximal attention has been paid to the positive peaks of ΔfoF2 with a duration of 6–8 h before the beginning of the substorm expansion phase (T 0). The possible physical mechanisms by which these peaks are formed (related to the impact of fast particles in the foreshock region of the solar wind on the Earth’s magnetosphere and different for middle and high latitudes) have been considered. The positive peaks of ΔfoF2 can be used in a short-term prediction of the ionospheric disturbance onset and space weather on the whole.  相似文献   

13.
An analysis of ionospheric data obtained during geomagnetic disturbances in April and September 2005 is performed in order to obtain information on the behavior of some ionospheric parameters at heights of the F1 layer. The results of measurements by an Irkutsk digisonde at hourly and 5- and 15-min time intervals were used. It is shown that in September all parameters very actively responded to geomagnetic disturbances in short measurement time intervals. It is also shown that the electron concentration behaves more stable at lower heights of the F1 layer both during strong and moderate disturbances.  相似文献   

14.
15.
Based on the Nimbus-7 (1978–1992) data and the parameters of solar activity (Wolf numbers W, solar radioemission F 10.7) and the ionosphere (f 2 index of the critical frequency of the ionospheric F 2 layer normalized to noon), the fractal dimension (FD) of the variations in the solar total irradiance (L) has been determined on the moving annual interval using the Higuchi technique. It has been established that FD estimates substantially vary in time. Quasibiennial variations (QBVs), which similarly manifest themselves in all considered processes, are detected in these variations. It is interesting that all fractal QBVs are in phase with QBVs of solar irradiance (L) and are almost in antiphase with QBVs of initial (filtered) W, F 10.7, and f 2 indices. The presence of QBVs in the solar processes and in their FD and noncoincidence of the former with the latter in phase indicate that QBVs have a two-component structure. The obtained results also indicate that an analysis of the annual FD estimates of the solar and ionospheric processes in studying variations in these processes is reliable.  相似文献   

16.
The structure and dynamics of the ionosphere and plasmasphere at low solar activity under quiet geomagnetic conditions on January 15–17, 1985, and July 10–13, 1986, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The detected correction of the model input parameters makes it possible to coordinate the measured and calculated anomalous variations in the electron density NmF2 at the height hmF2 of the ionospheric F2 layer over Argentine Islands ionosonde as well as the calculated and measured values of NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that vibrationally excited N2 and O2 molecules almost do not influence the formation of the winter anomaly under the conditions of low solar activity. A difference between the influence of electronically excited O+ on N e ions under winter and summer conditions forms not more than 11% of the N e winter anomaly event in the F 2 layer and topside ionosphere. The model without electronically excited O+ ions reduces the duration of the N e winter anomaly event. It has been shown that the seasonal variations in the composition of the neutral atmosphere form mainly the NmF2 winter anomaly event over the Millstone Hill radar at low solar activity.  相似文献   

17.
Month-to-month changes in the statistical characteristics of the ionospheric E layer peak electron density NmE at medium and low geomagnetic latitudes under daytime geomagnetically quiet conditions are investigated. Critical frequencies of the ionospheric E layer measured by the middle latitude ionosonde Boulder and low latitude ionosondes Huancayo and Jicamarca at low solar activity from 1957 to 2015 have been used in the conducted statistical analysis. The mathematical expectation of NmE, standard deviation of NmE from the expectation of NmE, and NmE variation coefficient have been calculated for each month of the year. The months of the formation of extrema of these statistical parameters of NmE were found.  相似文献   

18.
The variability degree of the F 2-layer height, hmF2, from the 1950s–1960s to the 1990s has been analyzed based on the vertical sounding data for a series of midlatitude ionospheric stations. It has been found that the scatter of the hmF2 values (standard deviation) abruptly increases from the earlier decades to the later ones. This increase is more evident in the spring period of the year and is independent of geomagnetic activity. An increase in the scatter of hmF2 apparently indicates systematic changes (trends) in the thermospheric dynamics, the existence of which was suggested in the recent publications of the authors.  相似文献   

19.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

20.
Data from 15-minute measurements at the vertical ionospheric sounding station in Irkutsk during the summer months of 2008–2011 are analyzed in order to detect in the ionosphere effects of preparation of weak earthquakes of the K = 10–12 energy class. The method of revealing disturbances in ionospheric parameters by simultaneous observations of the sporadic E layer and regular F2 layer, which was previously applied by the authors in the case of stronger earthquakes, was used. The efficiency of using this method to detect ionospheric disturbances preceding earthquakes also in the case of weak earthquakes is demonstrated. Possible ionospheric precursors of the selected series of earthquakes are identified. For them, an empirical dependence relating the time of advance of the shock moment by the probable ionospheric precursor on the energy class of the earthquake and the epicenter distance to the observation point is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号