首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


2.
The basaltic maar of Youkou, situated in the Adamawa Volcanic Massif in the eastern branch of the continental segment of the Cameroon Volcanic Line, contains mantle-derived xenoliths of various types in pyroclastites. Spinel-bearing lherzolite xenoliths from the Youkou volcano generally exhibit protogranular textures with olivine (Fo89.4?90.5), enstatite (En89???91Fs8.7?9.8Wo0.82?1.13), clinopyroxene, spinel (Cr#Sp?=?9.4–13.8), and in some cases amphibole (Mg#?=?88.5–89.1). Mineral equilibration temperatures in the lherzolite xenoliths have been estimated from three–two pyroxene thermometers and range between 835 and 937 °C at pressures of 10–18 kbar, consistent with shallow mantle depths of around 32–58 km. Trends displayed by bulk-rock MgO correlate with Al2O3, indicating that the xenoliths are refractory mantle residues after partial melting. The degree of partial melting estimated from spinel compositions is less than 10%: evidences for much higher degrees of depletion are preserved in one sample, but overprinted by refertilization in others. Trace element compositions of the xenoliths are enriched in highly incompatible elements (LREE, Sr, Ba, and U), indicating that the spinel lherzolites underwent later cryptic metasomatic enrichment induced by plume-related hydrous silicate melts. The extreme fertility (Al2O3?=?6.07–6.56 wt% in clinopyroxene) and the low CaO/Al2O3 ratios in the spinel lherzolites suggest that they could not be a simple residue of partial melting of primitive mantle and must have experienced refertilization processes driven by the infiltration of carbonatite or carbonated silicate melts.  相似文献   

3.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

4.
A suite of spinel peridotite xenoliths in Mesozoic basalts of the Tuoyun basin in the Tianshan area of northwest China has a high proportion of amphibole/mica-bearing lherzolites, with high Cpx/Opx ratios (mean 0.74). Many aspects of mineral chemistry in the Tuoyun peridotites are intermediate between those of refractory Archean cratonic mantle and fertile Phanerozoic mantle. These include Ni/Cr and the contents of transition metals and Y in olivine and orthopyroxene and the abundances of elements such as Na, Al, Ti, Y, Sr and LREE in clinopyroxene. The data suggest that the mantle in Tuoyun is moderately depleted in basaltic components relative to both the refractory Archean mantle and the fertile Phanerozoic mantle. The wide variations in the CaO/Al2O3 (0.9–3.5) of whole rocks and LREE/HREE (0.8–14.2) and Ti/Eu (971–5,765) of clinopyroxenes in the Tuoyun peridotites are interpreted as the metasomatism of hydrous carbonatitic and potassic melt or the cumulative effects of mantle metasomatism by different agents (carbonatite and small-volume silicate melts) through time. The Tuoyun mantle shows closer affinity to the type of mantle found beneath the Proterozoic Cathaysia block, and especially to that beneath the East Central Asia Orogenic Belt (ECAOB), than to the mantle beneath the Archean North China Craton. This implies that the Tianshan subcontinental lithospheric mantle may have been generated during the accretion of the ECAOB. The high proportion of fine-grained microstructures, high Cpx/Opx ratio, obvious Ca enrichment and lower overall depletion in the Tuoyun mantle relative to that in other parts of the ECAOB reflect stronger mechanical and chemical modification of the Tuoyun mantle, near the translithospheric Talas-Ferghana strike-slip fault, which played a major role in controlling the strength of the mantle lithosphere and has channeled the upwelling mantle.  相似文献   

5.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A rare composite xenolith and abundant cumulative pyroxenites obtained from the Mesozoic Fangcheng basalts on the eastern North China Craton record a complex history of melt percolation and circulation in the subcontinental lithospheric mantle. The composite xenolith has a dunite core and an olivine clinopyroxenite rim. The dunite is of cumulative origin and has a granular recrystallized texture and extremely low Mg# [100 Mg/(Mg + Fe) = 81–82] contents in olivines. The olivine clinopyroxenite contains larger clinopyroxene and/or orthopyroxene with a few fine-grained olivine and tiny phlogopite, feldspar, and/or carbonate minerals interstitial to clinopyroxene. The clinopyroxene has low Mg# (83–85). Compositional similarity between dunitic olivine and pyroxenitic one indicates a sequential crystallization of dunite and pyroxenite from a precursor melt. Pyroxenite xenoliths include olivine websterites and clinopyroxenites, both are of cumulative origin. Estimation of the melt from major oxides in olivines and REE concentrations in clinopyroxenes in these composite and pyroxenite xenoliths suggests a derivation from subducted crustal materials, consistent with the highly enriched EMII-like Sr and Nd isotopic ratios observed in the pyroxenites. Occurrence of phlogopite, feldspar and carbonate minerals in some xenoliths requires the melt rich in alkalis (K, Na), silica and volatiles (water and CO2) at the latest stage as well, similar to highly silicic and potassic melts. Thus, the occurrence of these composite and pyroxenite xenoliths provides an evidence for voluminous injection of recycled crustal melts into the lithosphere beneath the southeastern North China Craton at the Late Mesozoic, a reason for the rapid lithospheric enrichment in both elemental and isotopic compositions.  相似文献   

7.
This paper presents field, petrographic–structural and geochemical data on spinel and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinel lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musinè. Field evidence indicates that pristine porphyroclastic spinel lherzolites are transformed to coarse granular spinel harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinel harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinel harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1–5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinel peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musinè, coarse granular spinel harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinel harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes.

Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the “asthenospheric scenario” proposed by previous authors. We envisage a “transitional scenario” in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm.  相似文献   


8.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

9.
Quaternary basalts in the Cerro del Fraile area contain two types of mantle xenoliths; coarse-grained (2–5 mm) C-type spinel harzburgites and lherzolites, and fine-grained (0.5–2 mm) intensely metasomatized F-type spinel lherzolites. C-type xenoliths have high Mg in olivine (Fo = 90–91) and a range in Cr# [Cr/ (Cr + Al) = 0.17–0.34] in spinel. Two C-type samples contain websterite veinlets and solidified patches of melt that is now composed of minute quenched grains of plagioclase + Cr-spinel + clinopyroxene + olivine. These patches of quenched melts are formed by decompression melting of pargasitic amphibole. High Ti contents and common occurrence of relic Cr-spinel in the quenched melts indicate that the amphibole is formed from spinel by interaction with the Ti-rich parental magma of the websterite veinlets. The fO2 values of these two C-type xenoliths range from ΔFMQ −0.2 to −0.4, which is consistent with their metasomatism by an asthenospheric mantle-derived melt. The rest of the C-type samples are free of “melt,” but show cryptic metasomatism by slab-derived aqueous fluids, which produced high concentrations of fluid-mobile elements in clinopyroxenes, and higher fO2 ranging from ΔFMQ +0.1 to +0.3. F-type lherzolites are intensely metasomatized to form spinel with low Cr# (∼0.13) and silicate minerals with low MgO, olivine (Fo = ∼84), orthpyroxene [Mg# = Mg/(Mg + ΣFe) = ∼0.86] and clinopyroxene (Mg# = ∼0.88). Patches of “melt” are common in all F-type samples and their compositions are similar to pargasitic amphibole with low TiO2 (<0.56 wt%), Cr2O3 (<0.55 wt%) and MgO (<16.3 wt%). Low Mg# values of silicate minerals, including the amphibole, suggest that the metasomatic agent is most likely a slab melt. This is supported by high ratios of Sr/Y and light rare earth elements (REE)/heavy REE in clinopyroxenes. F-type xenoliths show relatively low fO2 (ΔFMQ −0.9 to −1.1) compared to C-type xenoliths and this is explained by the fusion of organic-rich sediments overlying the slab during the slab melt. Trench-fill sediments in the area are high in organic matter. The fusion of such wet sediments likely produced CH4-rich fluids and reduced melts that mixed with the slab melt. High U and Th in bulk rocks and clinopyroxene in F-type xenoliths support the proposed interpretation.  相似文献   

10.
 Carbonates of mantle origin have been found in xenoliths from Quaternary basaltic volcanoes in NW Spitsbergen. The carbonates range from dolomite to Mg-bearing calcite and have high Mg-numbers [Mg/(Mg+Fe)=(0.92–0.99)]. In some samples they occur interstitially, e.g. at triple junctions of silicate minerals and appear to be in textural and chemical equilibrium with host lherzolite. Most commonly, however, the carbonates make up fine-grained aggregates together with (Ca,Mg)-rich olivine and (Al,Cr,Ti)-rich clinopyroxene that typically replace spinel, amphibole, and orthopyroxene as well as primary clinopyroxene and olivine. Some lherzolites contain amphibole and apatite that appear to have formed before precipitation of the carbonates. In situ analyses by proton microprobe show very high contents of Sr in the clinopyroxene, carbonates and apatite; the apatite is also very rich in LREE, U, Th, Cl, Br. Disseminated amphibole in carbonate-bearing rocks is very poor in Nb and Zr, in contrast to vein amphibole and mica from carbonate-free rocks that are rich in Nb and Zr. Overall, the Spitsbergen xenoliths provide evidence both for the occurrence of primary carbonate in apparent equilibrium with the spinel lherzolites (regardless of the nature of events that emplaced them) and for the formation of carbonate-bearing pockets consistent with metasomatism by carbonate melts. Calcite and amorphous carbonate-rich materials occur in com- posite carbonate-fluid inclusions, veins and partial melting zones that appear to be related to fluid action in the mantle, heating of the xenoliths during their entrainment in basaltic magma, and to decompression melting of the carbonates. Magnesite is a product of secondary, post-eruption alteration of the xenoliths. Received: 6 October 1995/Accepted: 17 June 1996  相似文献   

11.
Three major types of xenoliths, namely, dunite, spinel lherzolite, and pyroxenite suites, occur. The spinel lherzolite suite [ol: Fo86–92] is more refractory than the pyroxenite suite [Fo71–85], and is composed of olivine, orthopyroxene, Cr-diopside, and spinel. Spinel lherzolites represent metasomatically modified mantle residues that constitute the lithosphere underneath Oahu. Metasomatism has induced significant heterogeneity in terms of [Na]cpx in the spinel lherzolitic lithosphere: compared to other vents, Salt Lake xenoliths are anomalously high in [Na]cpx. The fluids responsible for such a process may have been released after crystallization of the hydrous phases in pyroxenite suite veins intrusive into the spinel lherzolites.The pyroxenite suite rocks range from clinopyroxenites, wehrlites, websterites, to lherzolites and a rare dunite. Garnet generally occurs as a secondary phase forming reaction rims around spinel or exsolved blebs in clinopyroxene. Phlogopite and amphibole are common. The garnet-bearing pyroxenite suite rocks last equilibrated in the mantle at 1000°–1150° C and 16–25 kb (50–75 kms depth). Similar temperature range is recorded by the spinel lherzolite suite and rare plagioclase lherzolites. This P-T path is significantly hotter than a calculated conductive geotherm indicating that the lithosphere was substantially warmed up by passing Hawaiian magmas.Contribution No. 585, Geosciences Program, University of Texas at Dallas  相似文献   

12.
The Shanwang and Qixia basalts lie within the North China block and were erupted in Miocene to Pliocene time (18.1 to 4.3 Ma) and Pliocene time (6.4 to 5.9 Ma), respectively. The Shanwang area lies astride the Tancheng-Lujiang (Tanlu) fault zone, a major lithospheric fault, whereas the Qixia area lies east of the fault zone. The basaltic rocks (alkali olivine basalts, basanites, nephelinites) carry abundant deep-seated xenoliths including spinel lherzolite (dominant), dunite, and pyroxenite, and a megacryst suite including augite, anorthoclase, phlogopite, ilmenite, and garnet. Xenoliths with coarse-grained microstructures are common in the Qixia xenolith suite, but are absent in Shanwang. Reconstructed bulk compositions of the lherzolites range from relatively depleted (<3% modal diopside) to fertile (>12% modal diopside). Equilibration temperatures of 850° to 1020°C indicate entrainment of these lherzolites from depths ≤45 km, within the lithosphere; the geotherm may have been higher beneath Shanwang. The Shanwang suite contains less-depleted lherzolites, and more pyroxenites, than the Qixia suite. The chondrite-normalized REE patterns in clinopyroxenes of the Shandong xenoliths vary from LREE depleted, through concave shaped, to LREE enriched; spidergrams for the clinopyroxenes can be divided into depleted, fertile, and metasomatic types. Progressive depletion in Na and Al is accompanied by depletion in moderately incompatible elements such as Y, Yb, and Zr, and an increase in Mg#. Ti and Zr in clinopyroxenes have not been affected by the metasomatic process, and MREE have been little disturbed, whereas the light rare-earth elements, Nb, and Sr have been strongly enriched during metasomatism; this suggests that carbonate-rich fluids/melts were the metasomatic agent. The mantle beneath the Shandong Peninsula sampled by these basalts is dominantly Phanerozoic in character rather than Archean or Proterozoic lithospheric mantle. This mantle probably represents a mixture of older lithospheric mantle and newly accreted material that replaced the Archean lithospheric keel through extension, thermal erosion, and fluid/melt metasomatism. The differences in micro-structures, chemistry, temperature, and fluid/melt activity between Shanwang and Qixia are ascribed to their spatial relationships to the Tanlu fault, which is a major translithospheric suture that hasplayed an important role in the Cenozoic replacement of the pre-existing Archean lithospheric mantle.  相似文献   

13.
A wide range of trace elements have been analysed in mantle xenoliths (whole rocks, clinopyroxene and amphibole separates) from alkaline lavas in the Eastern Carpathians (Romania), in order to understand the process of metasomatism in the subcontinental mantle of the Carpatho-Pannonian region. The xenoliths include spinel lherzolites, harzburgites and websterites, clinopyroxenites, amphibole veins and amphibole clinopyroxenites. Textures vary from porphyroclastic to granoblastic, or equigranular. Grain size increases with increasing equilibrium temperature of mineralogical assemblages and results from grain boundary migration. In peridotites, interstitial clinopyroxenes (cpx) and amphiboles resulted from impregnation and metasomatism of harzburgites or cpx-poor lherzolites by small quantities of a melt I with a melilitite composition. Clinopyroxenites, amphibole veins and amphibole clinopyroxenites are also formed by metasomatism as a result of percolation through fracture systems of large quantities of a melt II with a melanephelinite composition. These metasomatic events are marked by whole-rock enrichments, relative to the primitive mantle (PM), in Rb, Th and U associated in some granoblastic lherzolites and in clinopyroxene and amphibole veins with enrichments in LREE, Ta and Nb. Correlations between major element whole-rock contents in peridotites demonstrate that the formation of interstitial amphibole and clinopyroxene induced only a slight but variable increase of the Ca/Al ratio without apparent modifications of the initial mantle composition. Metasomatism is also traced by enrichments in the most incompatible elements and the LREE. The Ta, Nb, MREE and HREE contents remained unchanged and confirm the depleted state of the initial but heterogeneous mantle. Major and trace element signature of clinopyroxene suggests that amphibole clinopyroxenites and some granoblastic lherzolites have been metasomatized successively by melts I and II. Both melts I and II were Ca-rich and Si-poor, somewhat alkaline (Na > K). Melt I differed from melt II in having higher Mg and Cr contents offset by lower Ti, Al, Fe and K contents. Both were highly enriched in all incompatible trace elements relative to primitive mantle, showing positive anomalies in Rb, Ba, Th, Sr and Zr. They contrasted by their Ta, Nb and LREE contents, lower in melt I than in melt II. Melts I and II originate during a two-stage melting event from the same source at high pressure and under increasing temperature. The source assemblage could be that of a metasomatized carbonated mantle but was more likely that of an eclogite of crustal affinity. Genetic relationships between calc-alkaline and alkaline lavas from Eastern Carpathians and these melts are thought to be only indirect, the former originating from partial melting of mantle sources respectively metasomatized by the melts I and II. Received: 17 March 1997 / Accepted: 14 July 1997  相似文献   

14.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   

15.
五相(橄榄石 斜方辉石 单斜辉石 石榴石 尖晶石)共存的地幔橄榄岩捕虏体是来自岩石圈地幔相转变带的直接样品。中国东部及西秦岭地区晚第三至第四纪碱性火山岩携带的少量五相共存的地幔橄榄岩捕虏体为探讨这些地区新生代岩石圈地幔中相转变带提供了宝贵的样品。本文根据地幔橄榄岩捕虏体中石榴石和尖晶石的产出状况,将这些橄榄岩捕虏体分为三类:第一类橄榄岩中尖晶石为粒状残核,尖晶石外缘被石榴石的反应边包围。这种橄榄岩捕虏体代表尖晶石一石榴石相转变带的上限,故称为尖晶石带橄榄岩;第二类橄榄岩中尖晶石和石榴石以单颗粒零散分布为特征,二者共存但未见明显的相转变关系。这类橄榄岩多位于相转变带中部,拟称为尖晶石-石榴石过渡带橄榄岩;第三类橄榄岩中以石榴石为主,尖晶石和辉石等微晶构成石榴石反应边。这类橄榄岩代表尖晶石-石榴石相转变带的下限,故称为石榴石带橄榄岩。因此,根据不同类型橄榄岩捕虏体中矿物的组成,结合温度压力估算即可确定岩石圈地幔中相转变带的深度和厚度。本文通过对中国东部及西秦岭地区晚第三至第四纪碱性火山岩携带的尖晶石-石榴石二辉橄榄岩捕虏体的温度压力估算来进一步厘定中国东部新生代岩石圈地幔中的相转变带深度和厚度。  相似文献   

16.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

17.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

18.
Mantle xenoliths in alkaline lavas of the Kerguelen Islandsconsist of: (1) protogranular, Cr-diopside-bearing harzburgite;(2) poikilitic, Mg-augite-bearing harzburgite and cpx-poor lherzolite;(3) dunite that contains clinopyroxene, spinel phlogopite, andrarely amphibole. Trace element data for rocks and mineralsidentify distinctive signatures for the different rock typesand record upper-mantle processes. The harzburgites reflectan initial partial melting event followed by metasomatism bymafic alkaline to carbonatitic melts. The dunites were firstformed by reaction of a harzburgite protolith with tholeiiticto transitional basaltic melts, and subsequently developed metasomaticassemblages of clinopyroxene + phlogopite ± amphiboleby reaction with lamprophyric or carbonatitic melts. We measuredtwo-mineral partition coefficients and calculated mineral–meltpartition coefficients for 27 trace elements. In most samples,calculated budgets indicate that trace elements reside in theconstituent minerals. Clinopyroxene is the major host for REE,Sr, Y, Zr and Th; spinel is important for V and Ti; orthopyroxenefor Ti, Zr, HREE, Y, Sc and V; and olivine for Ni, Co and Sc. KEY WORDS: mantle xenoliths; mantle metasomatism; partition coefficients; Kerguelen Islands; trace elements  相似文献   

19.
Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.  相似文献   

20.
This paper reports the results of a mineralogical study of 14 mantle peridotite samples dredged in 2009 from the eastern slope of the northwestern segment of the Stalemate Ridge in the northwestern Pacific during cruise SO201-KALMAR Leg 1b of the R/V Sonne. The sample collection included four serpentinized and silicified dunites and ten variably serpentinized lherzolites. The compositions of primary minerals (clinopyroxene, orthopyroxene, and spinel) change systematically from the lherzolites to dunites. Spinel from the lherzolites shows higher Mg# and lower Cr# values (0.65–0.68 and 0.26–0.33, respectively) compared with spinel from the dunites (Mg# = 0.56–0.64 and Cr# = 0.38–0.43). Clinopyroxene from the lherzolites is less magnesian (Mg# = 91.7–92.4) than clinopyroxene from dunite sample DR37-3 (Mg# = 93.7). Based on the obtained data, it was concluded that the lherzolites of the Stalemate Fracture Zone were derived by 10–12% near-fractional melting of a DMM-type depleted mantle reservoir beneath the Kula-Pacific spreading center. The dunites were produced by interaction of residual lherzolites with sodium- and titaniumrich melt and are probably fragments of a network of dunite channels in the shallow mantle. The moderately depleted composition of minerals clearly distinguishes the lherzolites from the strongly depleted peridotites of the East Pacific Rise and indicates the existence of slow-spreading mid-ocean ridges in the Pacific Ocean during the Cretaceous-Paleogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号